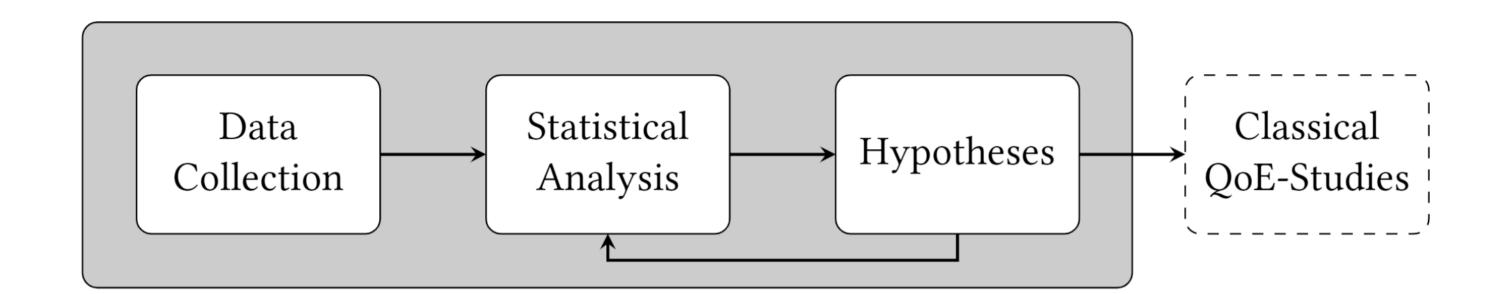


Data-Driven Long-Term Gaming Dynamics & User Experience



Motivation: How to study games played for months or years?

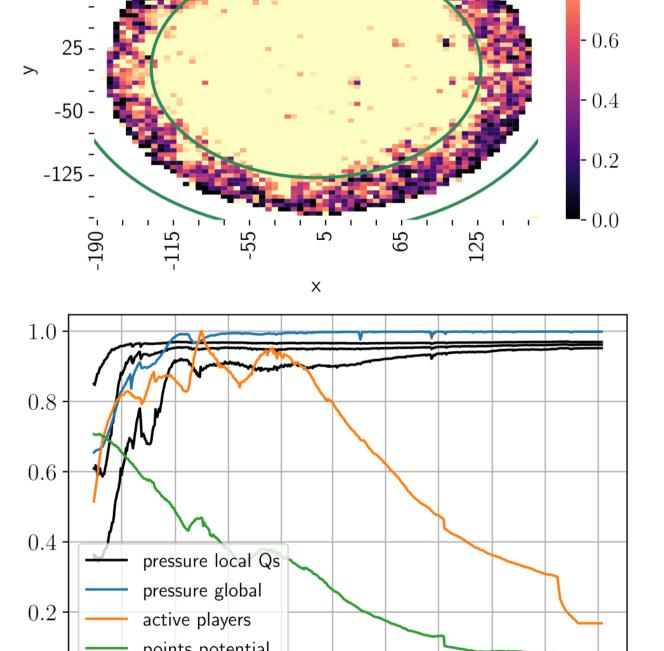
Long-Term Game rounds

- Classical QoE studies infeasible
 - Common lab stimuli are short (90-120s, 10-15min)
 - Sufficient for *most* games
- Games can feature long-term game rounds
 - Months up to years
 - To-be tested stimuli unknown
- Result: Large player population's experience remains unknown
- → Necessity for new methods & approaches, e.g., data-driven

Shaping Hypotheses for subsequent classical QoE studies

Our Data-Driven approach

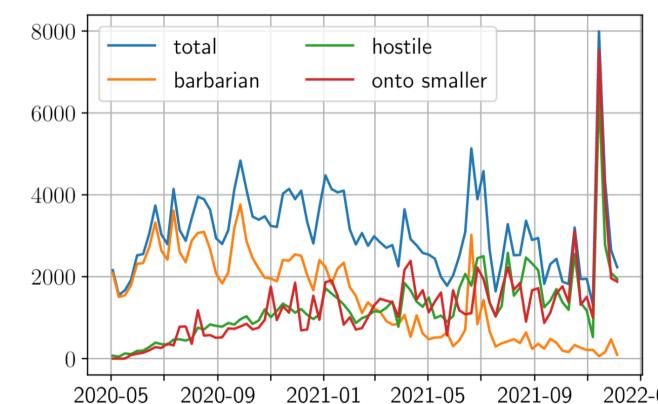
- Leverage whole player population for statistical analysis
- Derive suitable experience signals to enable QoE studies
- Apply classical QoE study methods for model development


Approach **Players Analytical Game State Feature (**4%) **DBMS Engineering** HTTP API **Signal Filtering** Crawler **Hypotheses Periodic Game State Crawl** Domain-Specific Feature Engineering *** **QoE Studies** Statistical Analysis of Significance

Subject

r'https://dsde.innogamescdn.com/asset/f0f06311/graphic/start2/screenshots/tribalwars_(map|village).j

Long-Term Gaming Dynamics

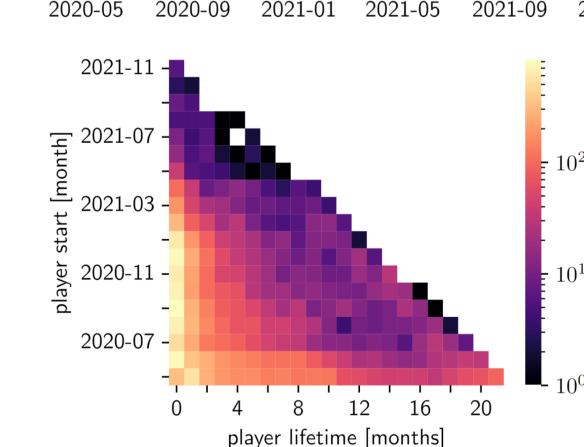


2020-07-01 + /-1 month

195 -

Increasing Expansion Pressure

- The game spawns limited player resources
- Leading to ever increasing scarce assets



Environment is becoming more Hostile

- Earlier game barbarian villages
- Hostile takeovers dominate conquers

Observed Pressure over Time

- Overall pressure rapidly increases
- Remaining building capacity vanishes
- Amounts of players decreases

User Lifetime correlated to Success

- Long-term commitment pays off
- Joining later becomes incredibly hard

User Experience Indicators

Analyze Partitioned Populations

2021-05

Align and partition by relative game time

2021-09

- Populations with rich features
 - Infer significant differences
 - Feature Relations reveal success factors
- Hypotheses to be tested subsequently

metric	p-values < 0.05 first 4 weeks overall		avg relation non/churn	
player rank	1.626 ·10 ⁻⁷	0.004248	<	0.762
player villages	2.104 ·10 ⁻⁷	0.000003	>	3.568
player points	2.866 ·10 ⁻²	0.000018	>	3.629
has ally fraction	4.209 ·10 ⁻¹¹⁷	0.007655	>	1.574
village pressure global	1.443 ·10 ⁻¹¹	0.230208	=	0.996
village pressure local	1.783 ·10 ⁻⁴	0.414349	=	1.004
villages gain	1.569 ·10 ⁻⁸	0.067301	>>	16.82
villages gain barbarian	5.366 ·10 ⁻⁸	0.219401	>>	16.92
kill all	$2.372 \cdot 10^{-12}$	0.073920	>	2.697
kill other	4.408 ·10 ⁻¹	0.067183	>>>	343.6

Future Steps

Create Causality with Classical Methods

- Enabling large scale population feature fingerprints
 - Data-Driven Analysis of Influence Factors
- Apply suitable methods as proof for hypotheses
- Lab-Studies
- Questionnaires
- Synthetic Control