
Application-Agnostic Offloading of Datagram Processing
†Oliver Hohlfeld, †Helge Reelfs, †Jan Rüth, ‡Florian Schmidt,

†Torsten Zimmermann, †Jens Hiller, †Klaus Wehrle

†COMSYS, RWTH Aachen University ‡NEC Laboratories Europe
†{lastname}@comsys.rwth-aachen.de ‡florian.schmidt@neclab.eu

Abstract—As network speed increases, servers struggle to serve
all requests directed at them. This challenge is rooted in a
partitioned data path where the split between the kernel space
networking stack and user space applications induces overheads.
To address this challenge, we propose Santa, an architecture to
optimize the data path by enabling server applications to (par-
tially) offload packet processing to a generic rule processor. We
exemplify Santa by showing how it can drastically accelerate UDP
packet processing in the Linux kernel—a currently neglected
domain. Our evaluation focuses on accelerating DNS traffic for
which we find a performance increase by a factor of 5.5 on real-
world request pattern.

I. INTRODUCTION

Increasing line rates challenge the packet processing perfor-
mance of current server systems. These performance challenges
can be attributed to two main overhead factors in network
stacks: i) memory allocations and copy operations, and ii)
overheads by performing system calls and the required context
switches [1]–[3]. These costs are particularly significant at
high line rates (e.g., multiple 10 G interfaces), but are already
apparent at lower rates if many (small) requests need to be
processed (e.g., for DNS traffic). Thus, current OS data path
designs significantly challenge packet processing performance
in commodity hard- and software where CPU speeds do not
scale with increasing line speeds.

The problem of speeding-up server systems is currently
addressed by alternative data path designs that entirely bypass
the kernel-level network stack as the bottleneck. One line of
research proposes to offload packet processing to dedicated
hardware for improved processing performance (see e.g., [4],
[5]). A very active line of research proposes to shift packet
processing to user-land stacks and thereby also removes the
kernel from the data path (see e.g., [2], [6]). Performance
improvements by this approach can be attributed to i) omitted
copy operations and context switches between user space and
kernel space and ii) benefits due to optimized and tailored
microstacks. Realizations of HTTP and DNS servers as example
applications utilizing user-land networking showed drastic
performance increases (see e.g., [3], [6]).

In this paper, we describe a different strategy to accelerate
server systems by proposing a widely applicable data path
architecture that can benefit from current bypassing approaches
but does not necessarily require the abandonment of well-
maintained kernel stacks. Inspired by SDN, we propose to split
the current data path into a control and data-plane, by enabling
applications to (partially) offload their packet processing into an

application-agnostic rule-processor (which we refer to as Santa).
This rule processor handles frequent requests on behalf of the
application in kernel space and therefore short-cuts the data
path. Its principal design enables it to reside in various parts of
the network, e.g., in programmable NICs or middleboxes. This
way, it can open the path towards unifying specialized solutions
that are currently addressed in isolation. It can further take
advantage of current stack bypassing techniques to accelerate
packet processing. However, it can also reside within traditional
kernel stacks, which is the example application domain in
this paper. From there, it can accelerate packet processing
by avoiding costly copy operations and context switches that
challenge server performance in the first place. Based on
the example set by applying our approach to accelerating
kernel-level packet processing, we are able to show how the
optimization of existing stacks—a domain that is currently
neglected—can provide competitive alternatives to radical
bypassing approaches.

The main contributions of this paper are as follows:
• We present Santa, a widely applicable data path design

involving an application-agnostic architecture enabling
user-level applications to offload replies to common
requests to a generic rule processor, e.g., to accelerate
kernel-level stacks. Benefiting from Santa only requires
minimal changes to applications that want to employ it.

• We highlight the benefits of Santa to accelerate a DNS
server involving UDP-based packet processing. Our evalu-
ation is based on real-world examples, i.e., ISP-level DNS
traffic traces. Santa increases the number of processed
DNS requests per second by up to a factor of 5.5.

The good news is: there is still some life left in kernel-
level packet processing. By applying Santa to the kernel, we
unlock the speed of kernel space networking for legacy server
software without requiring extensive changes or specialized
implementations. We thus pave the way for new packet
processing pipelines and complement the ongoing discussion
on user-level network stacks and kernel-bypassing techniques.

II. SANTA ARCHITECTURE

We accelerate packet processing by splitting it into a data
and a control plane, similar to SDN. This split is based
on short-cutting the traditional data-plane by inserting an
application-agnostic rule processor—which we refer to as
Santa—that allows applications to (partially) offload their
application processing logic. Santa can reside in various parts

MAC

Server
APP

Sa
nt
a

2

Sa
nt

a
co

nt
ro

l
1

Kernel

MAC
Ke

rn
el

Ke
rn

el

by
pa

ss
in

g

Santa

Scope of this paper Potential other location

1
2

1
2

Rule hit
Rule miss

data plane
control plane

Se
rv

er
 S

ys
te

m

M
id

dl
eb

ox

Fig. 1: Example execution positions of Santa: in-kernel (the
focus of this paper) and in middleboxes (e.g., accelerated with
kernel bypassing techniques such as DPDK or netmap).

of the network, e.g., in the kernel or in middleboxes (see Fig. 1).
In case of the latter, Santa presents a light-weight in-network
processing architecture that complements rather heavy-weight
NFV-based solutions. Applying Santa to the kernel has the
potential (by limiting context switches and copy operations) to
drastically accelerate traditional packet processing—a domain
that is currently neglected in the presence of rather radical
proposals to bypass the kernel entirely (see Section VI). By
applying Santa to the Linux kernel, we show that such radical
approaches are not always necessary providing a trade-off
decision to application developers and operators.

Unlike caching infrastructures, the control over the offloaded
rules remains at the applications using Santa. That is, we
provide a control plane offering applications the ability to add,
modify, and delete rules on the Santa rule processor. Further,
the control plane can be used for querying the rule processor,
e.g., to retrieve access statistics.

Santa is most beneficial if a significant part of an appli-
cation’s workload consists of repeatedly serving the same
requests with fixed responses (e.g., DNS, HTTP, Memcached,
or database workloads). This highlights the main focus of Santa:
it will only work well for (temporarily) static request–response
pairs, but in those cases, we show that it works exceedingly
well. Furthermore, we show the relevance of such static serving
even in today’s Internet full of highly dynamic content.

A. Rules: Definition and Expressiveness

The offloaded rules comprise a condition that checks whether
an incoming packet matches an anticipated request and a
processor that constructs a reply in that case. For each packet
that is destined for an application using Santa, the rule processor
checks whether the packet matches a rule. If a rule matches,
Santa replies with the offloaded response instead of forwarding
the packet to the application. Otherwise, the packet is handed
over to the application (e.g., via the standard socket interface
in case of a kernel-based implementation, or via a dedicated
control channel as in SDN) and the application will handle the
packet itself, as traditionally without Santa.

A condition comprises an offset, a length, and the pattern
to be matched. For example, a DNS server can construct a

BE EF! [DNS query ..] bund.de A IN!

ID! Condition: !offset = 2, length = 23!

1. Match condition on  
 incoming packet!

00 00! [DNS reply ..] A IN TTL 77.87.229.48!2. Processor rule!

BE EF! [DNS reply ..] A IN TTL 77.87.229.48!3. Construct reply!

a) Put: !offset = 2, length = 39!
b) Copy: !offset = 0, length = 2 !

!!

Fig. 2: Example DNS processing rule for an A record request
for bund.de. If the rule matches, it constructs a response
using put and copy rules specified in the processor template.
The put operation will put the static part (A record) and the
copy operation will paste the query-specific ID.

rule that recognizes packets querying an A record of a domain.
A processor, likewise, comprises an offset and a length, and,
additionally, either a put or a copy instruction. To continue the
DNS example (see Figure 2), the response to the requested A
record is constructed with two successive processors: a) one
that contains the reply, most importantly the IP address of the
requested domain, and b) one that copies the transaction ID
identifying the request into the response packet so that the
requesting host can correlate the received reply.

This very basic functionality has several advantages. By
only allowing very specific operations when matching requests
and constructing replies, we circumvent security issues that are
likely if we put complex server implementations into potentially
critical locations (e.g., kernel space or on shared middleboxes).
Furthermore, since conditions base on basic packet content
comparison, and processors either put predefined data into a
packet or copy parts of the request into the response, the rules
are application-agnostic. In our evaluation, we show that this
simple ruleset suffices to offload DNS responses.

B. Efficient Rule Matching

As Santa targets high-performance applications, handling
high packet rates is a fundamental requirement. Consequently,
evaluating whether or not Santa has to apply a rule on an
incoming packet becomes the main challenge.

This is done by checking all rules’ conditions using hashes
which thus is an elemental building block of our system.
However, Santa should handle conditions with arbitrary offsets
and lengths. Thus, a naive hashing approach, i.e., hashing each
condition’s pattern, would require calculating many hashes
for each incoming packet (one hash for each offset-length
combination that occurs in at least one condition). To reduce
this overhead, Santa identifies small, non-overlapping regions,
each defined by an offset and a length, and calculates hashes
only for these regions. Then, for each rule, Santa assigns the
first region that shares the offset with the rule and that is
smaller or equal in length compared to the whole condition to
be matched. For this, we calculate the hash of the (sub-)pattern
(induced by the region on the pattern to be matched) and store a
reference to the full condition and to the corresponding region
in a hash table (cf. Figure 3) using the calculated hash as the

R1 R2

S Y S

C O M

0 1 2 3 4 5byte

C1

C2

C3

Identifier Value

hn(SYS) (C1, R1, h32(SYS))
(C3, R2, h32(SYS))

hn(COM) (C2, R1, h32(COM))
S Y S

S Y S

Hash table

Fig. 3: Conditions C1, C2, C3 are inserted into Santa. The
algorithm identifies two regions (R1, R2) for matching. For
each condition’s starting region, the 32-bit FNV-1a hash (h32)
is calculated and put into the hash table. Here, we keep track
of the condition, region, and h32 value for match verification.

identifier. This enables to identify conditions that could match
to reduce the number of required full condition checks.

To check a packet, Santa calculates, for each region, the
hash of the corresponding packet’s sub-part and checks for the
occurrence of this hash in the hash table. If such an entry exists,
Santa performs a byte-wise comparison between the packet and
the full condition, as a region may cover only a subset of the
full condition and hash collisions may occur. When a rule, and
therefore the corresponding condition is added, modified, or
deleted, the algorithm incrementally updates affected regions
and executes necessary bookkeeping.

We explain the algorithm by means of an example given
in Figure 3. In this example, two conditions start at the same
offset, and a third starts three bytes later. Conditions C1 and C2

would yield one shared region R1 with the same offset and the
shorter length of both conditions. C3, however, is responsible
for producing another region R2. The conditions C1 and C2

are linked to their starting region R1, whereas C3 is linked to
R2. We store these links in the hash table with the hash value
of the condition’s region-defined sub-pattern as the identifier.

Due to having only two regions, we only need to calculate at
most two hashes for an incoming packet (instead of three, one
for each condition), one for bytes 0–2 and one for bytes 3–5.
The first region would hence cover all conditions having the
same starting offset and length of the overall shortest condition
of this set.

Naturally, in hash tables, collisions can occur. The number
of collisions may be de- or increased through the choice of
the hash’s length. The hash’s length also influences the hash
table’s size which again is an important factor. For an n-bit
hash, the table size is 2np with p denoting the size of a pointer.
Thus, e.g., a 32-bit hash table already requires 32 GB on a
64-bit architecture. However, by employing a 22-bit hash as
the primary key, the hash table’s size is only 32 MB. For our
implementation, we use the FNV-1a [7] hash which is extremely
fast to compute. To reduce the footprint of the hash table, we
cut the hash to the required key size.

Still, to cope with a possibly large number of hash collisions,
we employ a two-stage collision resolution. First, we calculate
a 32-bit hash and keep it for each condition’s region-induced
sub-pattern. With this knowledge, we ensure a matching 32-bit

hash value. Second, we also ensure a matching region for
each candidate. For example, the collision in Figure 3 (SYS)
cannot be resolved by the 32-bit hash, because the collision
stems from two conditions having the exact same hashing
input. However, the collision can be resolved by looking at
the regions. If the hash of SYS was calculated from R1 of
the incoming packet, (C3, R2) cannot be a valid result. Note
that the same sub-pattern from C2 is disregarded in R2 as
the condition does not start here (cf. hatched area Figure 3).
Finally, the whole condition found in the hash table has to
be checked against the incoming packet to ensure that it is a
correct match. This is not only due to potential hash collisions,
but also because we compute the hash possibly only on a
subset of a condition. For example, an incoming packet that
contains the value COMSIS in bytes 0–5 would show up as
a candidate for C2 by containing the value COM in R1 and is
checked. Nevertheless, it is obviously not a correct match.

III. UNUSED POTENTIAL OF KERNEL STACKS

Server applications largely rely on using kernel-level stacks
for packet processing. However, the packet processing perfor-
mance of current network stacks suffers from a partitioned
data path (see Figure 4a). In this partition, switching from
the hardware to the kernel space and from the kernel space
to the user space involves costly context switches and copy
operations. These operations can largely degrade the packet
processing performance of server systems, especially for small
packets [1], [2]. To address this issue, current works propose
to bypass the (inefficient) kernel entirely—and thus remove
the kernel from the data path (see Section VI).

In this paper, we complement this stream of work by
shortcutting the data path with Santa to drastically accelerate
packet processing in the traditional Linux kernel. We chose
this example to highlight that kernel-level packet processing
can be accelerated without having to abandon well-maintained
and feature-rich stacks from the data path.

Therefore, we start by motivating why the kernel is slow in
the remainder of this section before we describe the kernel-level
implementation of Santa in Section IV.

A. The Price of Partitioning

From a system perspective, the receive data path processing
can be split into three parts, each of which is handled separately
as shown in Figure 4a: (1) At the bottom, the PHY and (often)
MAC processing is efficiently done in specialized hardware.
(2) The central portion of the processing, the network and
transport layer, is done in the operating system’s network stack.
(3) Finally, the application is in charge of its own specific
protocols. This tripartition is mirrored in the setup of a classic
protocol stack. Between each of the partitions, a context switch
has to occur. Between hardware and kernel, this is done by
the hardware raising an interrupt, which allows the kernel’s
ISR (Interrupt Service Routine) to copy data from the network
hardware’s data queue into main memory and trigger further
processing. Once network and transport layer protocols have
been traversed, the packet payload is assigned to the application

NET!

MAC!

TRANS!

user!
kernel!

HW!
kernel!

APP!

(a) Standard

NET!

MAC!

TRANS!

μSTACK!

APP!

user!
kernel!

HW!
kernel!

By
pa
ss
!

(b) Bypass

NET

MAC

TRANS

user
kernel

HW
kernel

APP

Santa1

2

1
2

Rule hit
Rule miss

Santa control

(c) Santa

Fig. 4: Comparison of in-kernel Santa to (a) a traditional
network stack and (b) user-land stacks bypassing the kernel
data path. Santa provides a rule processor answering common
requests without passing the packet to the application.

it belongs to and is eventually added to the corresponding socket
queue. Finally, the application can issue a system call such as
read to receive the queued data.

This partition has the advantage of providing well-defined
interfaces between each of the building blocks. This is
highlighted by the fact that the generally-used Berkeley socket
interface has been in use since the 1980s. However, one large
disadvantage is the loss of efficiency. At each of the borders,
data has to be copied from one memory area to the other. This
turns out to be a problem as computing performance outpaces
memory access speed.

This becomes even more apparent when considering data
copy operations between user and privileged kernel space.
Whenever an application needs to read or write data from or
to the kernel, the memory region has to be copied. Even if
not, the mode switch between the user and kernel space is a
large bottleneck. Depending on the data that is transmitted, the
system calls providing the interface between user and kernel
space can easily account for a third of the processing time of
the packet within the host [1].

B. Reducing the Partitioning Overhead

Reducing this sizable partitioning overhead in packet pro-
cessing is a core motivation for many works in the field. We
discuss these works in Section VI. However, approaches that
have seen much exposure in recent years are netmap [2] and
DPDK [8], which form a part of high-performance network
server solutions such as Sandstorm [3] or optimized user space
stacks such as Seastar [9].

The idea of these bypass approaches, which is visualized
in Figure 4b, is to completely bypass the kernel’s network
stack and instead directly map data from the hardware queues
into the application. The performance gain stems from two
sources: First, by completely skipping network processing in
the kernel, data can be directly transferred from and to user
space, eliminating one copy operation. Second, the application
is required to not only process application-layer protocols,
but also the network and transport layer ones. By creating a
specialized microstack which only contains the functionality

required for the specific setup, packet processing can be further
optimized for specialized use cases. They have been shown to
support line rate throughput using small computing capacity
for a wide range of packet sizes and use-cases (see e.g., [3],
[9], [10]).

However, one of the advantages of bypassing is also its
disadvantage. By requiring the application to provide and
use its own network stack for network and transport layer
processing, bypassing abandons the exceedingly well-tested,
well-maintained, and feature-rich network stack available inside
the OS. In addition, new APIs and different programming
paradigms hinder a widespread adoption in well-established
networking applications.

IV. SANTA IN THE LINUX KERNEL

Given the potential performance gains, while maintaining
compatibility with legacy software, we decided to implement
Santa for the Linux kernel. Santa comprises a main part, which
is independent of the main kernel files and resides in its own
subtree, and several hooks in relevant places inside the network
stack (i.e., the socket and UDP layer). The footprint of these
hooks is quite small, only about 270 lines of code, of which
a large portion is due to the extension of the socket options
enabling the control plane (see Figure 4(c)).

A. Inserting Santa into the Receive Path

Received packets are processed in the Linux kernel within
the NET_RX softirq. Under normal conditions (and also for
Santa, if no rule matches), the packet is eventually passed into
the socket buffer, ready to be read by an application’s system
call. If on the other hand, Santa finds that the packet matches
a rule, it creates a response from the respective processor(s)
and then sends out the newly created response packet(s).

We inevitably increase the time the system spends in softirq
context because the send path is now also traversed during the
softirq in case of a match. This is not a problem in and of
itself; it is merely a result of skipping system calls and thus
a key contributor to our performance increase. However, it is
important to understand that this moves the potential bottleneck
of the system. Normally, under high load, the system is not
able to reach line rate because it spends the vast amount of its
CPU time switching back and forth between application and
kernel, copying data between them, and processing requests
in user space. Once we remove this bottleneck, the softirq
processing is potentially the next bottleneck to cope with. This
may happen earlier than one might expect because, by default,
the NET_RX softirq is only processed on the CPU the hardware
interrupt was triggered on, which, depending on the hardware,
might only be a single core in the system.

Thus, we require parallel processing of NET_RX softirqs to
unlock the full potential of Santa. With receive-side scaling
(RSS) and receive packet steering (RPS), the kernel already
provides such a mechanism. Both mechanisms enable to process
packets of the same flow on the same CPU, thus eliminating
limitations of simple hardware IRQ distribution. We do not go
into further details of RSS and RPS here; for this paper, it is

merely important to understand that both allow distributing the
processing of incoming packets efficiently over several cores,
unlocking the full potential of Santa.

B. UDP Processing

We insert Santa into the UDP receive path. After a packet
has been associated with an actual socket, we intercept it to
check whether the incoming datagram matches a rule. This is
important as applications insert rules for specific sockets, hence,
we need to know to which socket a packet should be delivered
to. Otherwise, an application could hijack other applications’
packets by inserting rules that match those packets. If a rule
matches, Santa constructs a reply from the rule’s processors,
inserts it into the network stack’s transmit path and discards
the packet that triggered the rule. That way, it is neither handed
over to the application, resulting in a duplicate answer nor
triggers the costly traversal of the user–kernel barrier.

Nevertheless, we collect statistics per rule that can be made
available to the user space application as a feedback channel,
such that Santa does not operate fully under the radar.

C. User space API

To enable applications to offload packet processing tasks to
Santa, we realized a simple user space API. Once a socket is
created, the application can attach a processor and a condition
(cf. Section II) that define the matching and the resulting action.
We illustrate the usage of this interface by an example shown
in Listing 1.

1 #include "santa-userspace.h" /*userspace part*/
2 struct santa_processor p = {0};
3 struct santa_condition c = {0};
4 p.type = SANTA_COPY_TEMPLATE;
5 p.buf = "COM"; p.len = 3; p.offset = 0;
6 c.buf = "SYS"; c.len = 3; c.offset = 0;
7 /*set processor for condition to specific socket*/
8 c.p = setsockopt(fd, SOL_SOCKET, SO_SANTA_P, &p,

sizeof(p));
9 /*add the condition*/

10 setsockopt(fd, SOL_SOCKET, SO_SANTA_C, &c,
sizeof(c));

Listing 1: Santa usage example – we match COM while
responding with SYS on socket fd.

After defining the type of the processor, i.e., copy (put) data
from a predefined template (cf. lines 4 and 5), this processor is
attached to the socket fd via the setsockopt system call.
This call returns an identifier of the newly added processor,
which can be bound to a condition (cf. lines 6 and 8). Finally,
this condition is also attached to the socket; from now on Santa
will intercept packets matching the condition and replies with
the defined answer. All other packets destined for this socket
not matching the condition are forwarded to the application as
usual. Update and delete methods are handled likewise.

Note that a non-root application can only alter Santa
properties of its own sockets to isolate applications for security.

V. EVALUATION: DNS SERVER

Santa allows frequently accessed and (temporarily) static
content to be served at lower latency and higher throughput
in the number of requests. We demonstrate this ability by
using Santa to accelerate a DNS server as a widely-used UDP-
based application [11]. Since performing name resolutions are
the first steps in many Internet transactions, optimizing DNS
performance helps to optimize the performance of Internet-
based applications. In particular, drastic increases in throughput
allow highly loaded servers to reduce the overall load and to
serve a much larger number of clients with the same hardware.

A. Testbed Setup

We evaluate the performance of Santa in a testbed study. The
testbed consists of a single server, equipped with a Quad-Core
Intel i7 CPU running at 3.6 GHz and 16 GB of RAM. This
server runs the Santa Linux kernel and a BIND 9.10.2 DNS
server. We extended BIND to utilize the Santa socket options
for installing rules into Santa. Four load generating clients are
connected via 10 G Ethernet over a Netgear switch to the server.
The selected number of clients allows creating an overload
scenario fully utilizing the bottleneck server-link. The reason to
focus on a high-load / overload scenario is that this challenges
the performance of traditional user space packet processing
the most. Due to the small packet size of DNS requests, we
introduce a high amount of per-packet processing overhead.
Therefore, we expect performance optimizations to be the most
pronounced in this scenario. Our load generation is based on
replaying DNS requests according to pre-configured popularity
distributions using DNSPerf [12]. The workload generation is
subject to artificial test and two realistic popularity distributions
that we describe later in this section.

B. Baseline Performance: BIND

We start by showing that our Santa extension has no
performance drawback over an unmodified vanilla Linux kernel
in the absence of matching rules. That is, we compare the
baseline performance of our modified kernel to the unmodified
kernel when no Santa rules are installed and all requests are
handled by BIND. This evaluation serves two purposes. First,
it provides an intuition on the achievable performance in our
testbed with unmodified standard software. Second, it helps
to ensure that our Santa kernel modification has no negative
performance implications on the standard kernel.

To this end, we measure the BIND 9 performance on a
vanilla Linux kernel and on our modified Santa kernel striving
for a maximum number of replies. We thus configured BIND
to serve only a simple DNS request for a single A-record for a
predefined domain. We expect that this minimum setup results
in the least processing overhead for BIND, and thus presents
an upper performance bound.

As workload, we generate DNS requests to only that resource
record. We then measure the performance over 45 s intervals
in which all clients perform requests in parallel while using a
warmup period of ≈ 15 s. We repeat the experiment 30 times,
both for the vanilla kernel and for the Santa kernel. As a

1 10 1k 10k 20k 35k 50k 100k 500k 1M

Zone Entries

0

1.0M

2.0M

3.0M

4.0M
R

ep
li
es

/
s

BIND Vanilla BIND Santa

Fig. 5: Compared to BIND, Santa increases throughput by factor
5 throughout any number of installed rules. The throughput,
however, decreases with higher amounts of rules.

performance metric, we measure the requests served by BIND
per second by capturing the received DNS traffic on the clients.

We show the distribution of the achieved performance for
both kernels as green and red bars in Figure 5 (see the 1 zone
entry bars). For both kernel configurations (i.e., the unmodified
kernel and the Santa kernel), we show the sum of DNS replies
received by all the 4 workload generating clients. We observe
that the maximum performance of BIND in our setup is below
640 k replies per second. Furthermore, both kernels perform
virtually identical. This shows that the Santa extension has no
negative performance implication on the standard Linux packet
processing performance.

C. Baseline Performance: Santa

We next move to evaluate the achievable performance of
our Santa extension. To use a realistic request structure (i.e.,
length and domain pattern), we extract domain names from
the Alexa top 1 M list. To evaluate Santa’s performance with
respect to the number of installed rules, we extract n unique
DNS names (from 1 to 1 million) from the Alexa list creating
n rules and measure the reply throughput.

As a request pattern, each client requests a permutation of
these n DNS names over and over. This request pattern serves
as an example workload of a DNS resolver, where each entry
is equally popular (we show the performance for more realistic,
power-law distributed requests in Section V-E). All four clients
replay the respective permutation using DNSPerf to saturate
the server. On the server side, we offloaded rules for the set
of n hosts, thus guaranteeing only rule hits. Preliminary tests
(not shown) revealed that a hash table size of 22 bit suffices to
reach near best performance in our test cases.

Figure 5 shows the sum of served requests per second while
increasing the number of rules installed in Santa from 1 to 1 M
entries of the Alexa top 1 M list. As in the previous section, we
measure the performance over intervals of 45 s while repeating
the experiment 30 times for rule set size n. Finally, we repeat
the experiment with BIND and create n zone entries.

This evaluation shows a performance increases by a factor of
4.9 to 5.6 compared to BIND for all tested numbers of installed
rules. Specifically, up to 10 k configured hosts, we observe
a stable number of 3.3 M to 3.6 M replies per second. The
performance starts dropping at 10 k configured zone entries.
We attribute the observed performance drop to emerging hash

int. req.
int. ans.+req.
ext. req.
ext. ans.+req.

100101102103104105106107

Rank

100
101
102
103
104
105
106

#
R

eq
u

es
ts

(a) DNS RR Popularity

1 10 100 1k 10k100k

Offloaded Zone Entries

0

20

40

60

80

100

R
eq

u
es

ts
se

rv
ed

b
y

S
a

n
ta

[%
]

(b) Santa Hit Rate

Fig. 6: Requests to an ISP internal and external DNS server
follow a power-law (a). Thus, handling few heavy-hitters with
Santa yields high hit-rates (b).

collisions. That is, due to all DNS request match conditions
starting at the same offset and a presumably short region,
domain names with the same prefix will create the same hash
values for their region. The performance further decreases
with an increasing number of rules. Nevertheless, Santa clearly
outperforms BIND.

This baseline evaluation already shows the potential of our
approach. We remark that this use-case is artificial as no
single DNS server will likely serve as many entries—and more
importantly, not all entries will be equally popular. Therefore,
we will now focus on evaluating Santa based on the request
pattern of a real-world DNS resolver.

D. Properties of Real-World DNS Traffic

To base the evaluation of Santa on realistic real-world DNS
traffic, we next analyze DNS request patterns of end-users.
The data that this analysis was based on was captured in a
small segment of an ISP’s residential access network over the
course of 60 h in May 2015. To preserve the privacy of the
end-users, IP addresses were anonymized and the requested
DNS resource records were hashed. As such, we could only
extract access popularities of the anonymized requests.

We focus on two DNS resolvers: i) an ISP-internal DNS
that serves as default resolver for the connected users and
ii) an external DNS resolver voluntarily configured by some
users. For the ISP-internal (external) DNS resolver, we observe
42.6 M (2 M) requests to 727 k (50 k) distinct resource records,
respectively. The external DNS server receives fewer requests
since it needs to be explicitly configured by the users.

The request frequency of the resolved resource records
follows a power-law, i.e., very few DNS records receive the bulk
of the requests. Processing these heavy hitters with Santa has
the potential to significantly improve the overall performance
of a DNS server. We show the request frequency of each
resource record ordered by decreasing frequency as solid lines
in Figure 6a. The power-law distribution is indicated by an
almost straight line in the log-log space. As the internal (default)
DNS resolver receives more traffic, the distributions are shifted.

However, DNS request-to-response mappings are only stable
for limited time spans defined by the records’ TTL (e.g.,
minutes in the case of CDNs). Changing mappings requires
updates to the Santa rules. To understand how many requests

can be satisfied with one mapping before an update is necessary,
we next investigate combinations of (resource record, record
type, answer). Each such combination corresponds to a rule
that we would need to insert or update. This grouping results in
3.6 M (193 k) distinct combinations for the internal (external)
DNS server, respectively. As for the requests, the combination
of requests and answers also follows a power law, depicted by
the dashed lines in Figure 6a.

The observed power law suggests that stable mappings
receive substantial hits before rule updates are required. Thus,
the overall DNS server performance can be significantly
optimized by an accelerated processing of heavy-hitters. By
assuming an optimal offloading strategy and a-priori populating
Santa with the n most popular objects, we depict the achievable
rule hit rate in Figure 6b. That plot indicates that offloading
as few as 100 of the most popular DNS resource records
to Santa already yields a rule hit rate of 18.6 %. Increasing
the amount of Santa rules to include the top 10 k requested
DNS records already yields a rule hit rate of 60.8 %. Thus, a
substantial amount of DNS requests has the potential to benefit
from Santa accelerations. We empirically show this benefit in
a testbed-driven evaluation in the remainder of this section.

We further remark that authoritative and root DNS servers
offer an even greater potential to benefit from Santa acceleration
due to lower and more stable set of resource records.

E. Applying Santa to Real-World DNS Traffic

We next evaluate Santa with a realistic workload pattern
derived from our measurements. This workload pattern allows
generating different mixtures of traffic served by BIND and
Santa in parallel. That is, we configure BIND to offload the n
most popular records to Santa.

We base this evaluation on the same testbed setup as used
in the previous evaluations. However, this time, regardless of
the offloaded request set, each client picks requests from all
the Alexa 1 M hosts at random, weighted according to the
probability distribution observed in the internal ISP trace (see
Figure 6a). As a result and unlike in Section V-C, only the
offloaded entries are served by Santa, whereas the remaining
traffic is served by BIND. As the DNS trace was anonymized,
we establish a canonical mapping between the hashed DNS
names and hosts in the Alexa top 1 M list, i.e., the most
prominent DNS hash is assigned to the first entry in the Alexa
list and so on. Thus, we generate realistic rule hit rates and
hence workload patterns from the anonymized data. We replay
the requests to the server from all four clients while measuring
30 times for a period of 45 s for the evaluation. Again, a
warmup period of ≈ 15 s was added for measuring in a stable
region and we remain with our previous 22 bit hash table.

Figure 7 shows the results as the number of observed replies
per second for all four clients for a varying amount of offloaded
requests. Recall that this resembles a mixed scenario in which
both BIND and Santa are active simultaneously, i.e., offloaded
entries are served by Santa and the other entries by BIND. Thus,
the performance is denoted as the overall server performance.
When Santa is not active (i.e., amount of rules is 0) we see

0 1k 10k 50k 100k 200k 500k 1.0M

Offloaded Zone Entries

0

1M

2M

3M

R
ep

li
es

/
s

Fig. 7: BIND & Santa parallel operation: BIND offloads the
top n ∈ {0, . . . , 1M} requests from our empirical DNS trace
(see Figure 6a) to Santa. Due to the power-law distributed
popularities, this results in a more significant performance
increase the more responses are offloaded to Santa by a factor
of up to 5.5.

that BIND performs comparably to our previous evaluation by
serving about 500 k requests per second. The slightly worse
performance compared to Figure 5 is due the larger working
set of resource records. Once we start offloading the most
frequent requests to Santa, we observe drastic performance
improvements similar to the power-law distribution of the
request pattern. Concretely, we see that already offloading the
1 k most requested hosts increases the overall performance by
36 %. This speedup factor ever increases as Santa serves more
and more requests. At 1 M entries, Santa serves all requests and
reaches 2.8 M replies/s, a factor of 5.5, in line with the results
shown in Figure 5. We remark that the overall performance of
the system is primarily degraded in this mixed scenario due
to BIND also using a significant portion of the computation
time while serving requests. However, Santa’s performance
ever increases with an increasing amount of offloaded requests.

F. Takeaway

Our results show that, based on different synthetic and real-
world DNS traffic patterns, Santa can substantially increase
DNS server throughput by factors of 4.9 to 5.6 due to
reduced per-packet processing times. Our results thus indicate
that the performance of highly loaded DNS servers can be
drastically improved by Santa. This can not only increase the
performance on a set of existing hardware, but it can also
reduce the hardware requirements for an existing workload,
thereby reducing the hardware and energy cost of a server
deployment: with Santa, a higher number of requests can be
served with less hardware.

VI. RELATED WORK

Classical approaches to optimize packet processing on end-
hosts and servers are kernel optimizations and alternative
network APIs. Proposed optimizations involve i) channelizing
processing [13], [14], ii) alternative socket abstractions [14], or
iii) using batching to reduce overheads [14], [15]. While these
optimizations are application independent, improved packet
processing performance can also be obtained by moving the
entire server logic into the kernel. To this end classic network
processing tasks, steered by the user space, such as firewalling

and demultiplexing have long been a kernel feature [16] often
enabled via packet filters [17] such as BPF [18] but also recent
advancements in NFV make use of this concept of executing
user-level code in the kernel environment [19], [20]. Other
approaches implement an HTTP cache in kernel [21], [22].
They split up static and dynamic HTTP content to be handled
by the kernel and a user space web server respectively. Serving
static content from a kernel space web server showed to nearly
double the performance [22]. While Santa benefits from similar
performance improvements due to in-kernel packet processing,
it is application agnostic and enables every application to
offload packet processing tasks expressed via rules. To reduce
the load on servers based on commonly requested items, i.e.,
HTTP or peer-to-peer content, [23] proposes an extension of
TCP that allows the content provider to label cacheable items.
Routers on the path cache these labeled packets and serve them
directly to clients if a request is intercepted. Santa is able to
process packets based on the aforementioned rules, without
the need for protocol modifications for tagging such as labels.
In this way, we provide a generalized and application-agnostic
framework for offloading packet processing, without altering
standardized protocols or requiring on path assistance.

More radical approaches involve bypassing the kernel in
the data-plane by either i) offloading packet processing to
specialized hardware, such as GPUs [4], [5], [24], [25] or
NetFPGAs [26], or by ii) shifting packet processing to user-land
stacks [2], [3], [6], [10]. The latter achieves drastic performance
increases and lower CPU footprints by avoiding kernel-based
packet processing overheads [3]. These advances have proven
to be useful for accelerating software switches [27], HTTP [3],
[6], and DNS servers [3]. However, bypassing the kernel comes
at the cost of abandoning a well-maintained kernel network
stack offering central administration. Likewise, new OS designs
propose to generally remove the kernel from the data-plane [28],
[29]. Conversely, StackMap [30] combines the standard Linux
network stack with fast netmap-based network I/O, but still
requires dedicating network cards to applications with limited
isolation among each other, while Santa can support any number
of applications and keep strong isolation between them.

Closest to our approach are application specific handlers
(ASHs) [31]. ASHs enable applications to offload generic code
into the kernel to handle message arrivals. These handlers
are user-written routines that have to be checked for bounded
execution and if exceptions are prevented. We build upon this
motivation to eliminate expensive copy operations and user
space/kernel space switches. In contrast, our more restricted
rule-based language avoids potentially costly (security) checks
required when executing generic code. It further offers the
potential to efficiently match rules that are executable on a
spectrum of heterogeneous target platforms, e.g., the kernel,
NICs, or middleboxes.

VII. DISCUSSION

While we discussed the design and implementation decisions
and trade-offs in detail in Sections II and IV, some additional
general points deserve further discussion.

Santa vs. caching. While Santa shares similarities with
traditional caching, both concepts are fundamentally different.
A traditional cache, be it a CPU, an OS, or a web proxy cache,
acts independently of the application. It manages its cache
based on heuristic rules that try to keep frequently accessed
items while removing unpopular or outdated ones. In contrast,
Santa’s capabilities are controlled by the application. It is
not fixed to a certain size, and elements are inserted and
removed explicitly, not implicitly via a cache control algorithm.
Furthermore, updates to outdated information are also triggered
by the application itself. This eliminates two disadvantages of
caching. First, it prevents that outdated information is being
delivered from the cache. Second, there is no cache thrashing,
because items are not added and removed based on a generic
popularity metric, and there is no pressing need to remove
items to add other ones.
Encrypted Traffic. A continuously increasing amount of
Internet traffic is encrypted [32]—e.g., noticeable by the growth
in the HTTPS ecosystem [33]—and can challenge rule matching
performed in kernel space. One example of an encrypted
protocol is the new emerging transport QUIC. Here, encryption
is applied above the lower transport layer (UDP) posing a
particular challenge to Santa (unlike e.g., IPSec that happens
before Santa matching). Since decryption is performed in user
space, rules cannot match in kernel space. Although methods
for matching on encrypted traffic (see e.g., [34]) or enabling
a selected party to access and modify traffic (see e.g., [35])
exist, these add overhead and require client modifications.
Expressiveness of rules. Santa’s rules were deliberately
designed to be very simple. First, this simplicity allows less
complex code in possibly sensitive privileged areas such as
the kernel and thus increases security. Further, this simplicity
allows finding matching rules with high efficiency, as described
in Section II-B. This hinges on the fact that matches have an
offset and a length so that static areas inside incoming packets
are checked. On the other hand, this means that more complex
protocols using variable length encoding cannot be matched.
Following our QUIC example, the length, occurrence, and
order of different headers are not fixed, i.e., it is not possible
to match them in every conceivable position and combination
without a prohibitive overhead. In such cases, a string search
rule checking for the existence of a match anywhere in the
packet would be desirable. However, the processing overhead
of such rules would be much larger, and our hashing approach
would also break. Thus, to implement such rules, we would
need a different concept of matching.
Protocol independence. Our use case shows the common
scenario for employing Santa, offloading replies from servers.
This is exemplified by realizing Santa for UDP packet process-
ing to accelerate DNS servers. However, since Santa rules are
protocol agnostic and can match on arbitrary parts of incoming
packets, there is no need to speak any already existing protocol.
In fact, Santa also supports hooking rules earlier into the packet
processing than presented in this paper, e.g., on the network
layer. Matching at such an early point in the stack allows
parsing all packets (not only those for a certain socket) and thus

opens up the possibility to hijack packets. Therefore, installing
such rules should require root access, similar to opening raw
sockets. Nonetheless, inserting rules in this way opens up
new possibilities, e.g., it enables to adapt or implement new
transport layer protocols by defining rules that encompass the
protocol behavior, without needing to update the kernel code.
Enabling in-network processing. While this paper focuses
on partially offloading application logic to the kernel, it is
not limited to in-kernel processing. Concretely, application
logic expressed by simple SDN-inspired Santa rules can be
conceptually executed in any network device, e.g., ranging
from the NIC to programmable edge switches. Thus, this paves
the way for enabling lightweight in-network processing.

VIII. CONCLUSION

This paper described Santa, a new strategy to accelerate
server systems by proposing a widely applicable data path
architecture that can benefit from current bypassing approaches,
but does not necessarily require the abandonment of well-
maintained kernel stacks. Santa allows applications to (par-
tially) offload their (frequent) packet processing tasks into an
application-agnostic rule-processor that can reside in various
parts of the network, e.g., in an OS kernel. It thus essentially
optimizes the data path by shortening it. We demonstrate this
potential by implementing Santa in the Linux network stack—
an application domain that is currently neglected in the presence
of the proposal to remove kernel-stacks from the data path. We
evaluate its benefit on the example of UDP packet processing
for accelerating a DNS server, subject to a real-world traffic
pattern. Our evaluations highlight that Santa can increase the
number of served DNS requests of a factor up to 5.5.

By the example application of Santa to the kernel, we show
that still significant performance increases can be reached. Thus,
the good news of this paper is: there is still life left in kernel-
level packet processing. While we exemplified our approach
in this domain, its design is not limited to the kernel and
thus presents a first step for enabling lightweight in-network
processing. This protocol-agnostic approach, despite its ease of
use, opens up the possibility for performance improvement to
all applications that struggle under heavy load from semi-static
request-response pairs. Thus, it can both increase potential
throughput on existing machines, or reduce the number of
servers required to handle the same workload.

REFERENCES

[1] S. Larsen, P. Sarangam, R. Huggahalli, and S. Kulkarni, “Architectural
Breakdown of End-to-End Latency in a TCP/IP Network,” International
Journal of Parallel Programming, vol. 37, no. 6, pp. 556–571, 2009.
[Online]. Available: http://dx.doi.org/10.1007/s10766-009-0109-6

[2] L. Rizzo, “netmap: A Novel Framework for Fast Packet I/O,” in USENIX
Security Symposium, 2012.

[3] I. Marinos, R. N. Watson, and M. Handley, “Network Stack Specialization
for Performance,” in ACM SIGCOMM, 2014.

[4] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: A GPU-
accelerated Software Router,” in ACM SIGCOMM, 2010.

[5] I. Pratt and K. Fraser, “Arsenic: a user-accessible gigabit Ethernet
interface,” in IEEE INFOCOM, 2001.

[6] M. Honda, F. Huici, C. Raiciu, J. Araujo, and L. Rizzo, “Rekindling
Network Protocol Innovation with User-level Stacks,” SIGCOMM CCR,
vol. 44, no. 2, pp. 52–58, Apr. 2014.

[7] G. Fowler, L. C. Noll, K.-P. Vo, and D. Eastlake, “The FNV Non-
Cryptographic Hash Algorithm,” Internet Draft draft-eastlake-fnv-09,
Apr. 2015.

[8] “Intel DPDK,” http://dpdk.org.
[9] “Seastar project,” http://www.seastar-project.org.

[10] E. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm, D. Han, and K. Park,
“mTCP: a highly scalable user-level TCP stack for multicore systems,”
Proc. 11th USENIX NSDI, 2014.

[11] P. Richter, N. Chatzis, G. Smaragdakis, A. Feldmann, and W. Willinger,
“Distilling the Internet’s Application Mix from Packet-Sampled Traffic,”
in PAM, 2015.

[12] Nominum, “DNSPerf,” http://nominum.com/measurement-tools/. [On-
line]. Available: \url{http://nominum.com/measurement-tools/}

[13] V. Jacobson and B. Felderman, “Speeding up Networking,” linux.conf.au,
2006. [Online]. Available: http://ns1.lemis.com/grog/Documentation/vj/
lca06vj.pdf

[14] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy, “MegaPipe: A New
Programming Interface for Scalable Network I/O,” in OSDI, 2012.

[15] T. Marian, K. S. Lee, and H. Weatherspoon, “NetSlices: Scalable Multi-
core Packet Processing in User-space,” in ACM/IEEE ANCS, 2012.

[16] “netfilter,” http://www.netfilter.org.
[17] J. Mogul, R. Rashid, and M. Accetta, “The Packer Filter: An Efficient

Mechanism for User-level Network Code,” in ACM SOSP, 1987.
[18] S. McCanne and V. Jacobson, “The BSD Packet Filter: A New

Architecture for User-level Packet Capture,” in USENIX, 1993.
[19] H. Ballani, P. Costa, C. Gkantsidis, M. P. Grosvenor, T. Karagiannis,

L. Koromilas, and G. O’Shea, “Enabling End-Host Network Functions,”
in ACM SIGCOMM, 2015.

[20] S. Pathak and V. S. Pai, “ModNet: A Modular Approach to Network
Stack Extension,” in USENIX NSDI, 2015.

[21] M. Bar, “Kernel Korner: kHTTPd, a Kernel-Based Web Server,” Linux
Journal, vol. 2000, no. 76, Aug. 2000.

[22] C. Lever, M. A. Eriksen, and S. P. Molloy, “An analysis of the TUX
web server,” Center for Information Technology Integration, Tech. Rep.,
2000.

[23] P. Sarolahti, J. Ott, K. Budigere, and C. Perkins, “Poor man’s content
centric networking (with TCP),” Aalto University, Tech. Rep., 2011.

[24] G. Vasiliadis, L. Koromilas, M. Polychronakis, and S. Ioannidis, “GASPP:
a GPU-accelerated stateful packet processing framework,” in USENIX
Annual Technical Conference, 2014.

[25] S. Kim, S. Huh, Y. Hu, X. Zhang, A. Wated, E. Witchel, and
M. Silberstein, “GPUnet: Networking abstractions for GPU programs,”
in OSDI, 2014.

[26] M. Flajslik and M. Rosenblum, “Network interface design for low latency
request-response protocols,” in USENIX Annual Technical Conference,
2013.

[27] L. Rizzo and G. Lettieri, “VALE, a Switched Ethernet for Virtual
Machines,” in CoNEXT, 2012.

[28] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy,
T. Anderson, and T. Roscoe, “Arrakis: The Operating System is the
Control Plane,” in USENIX OSDI, 2014.

[29] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion, “IX: A Protected Dataplane Operating System for High
Throughput and Low Latency,” in USENIX OSDI, 2014.

[30] K. Yasukata, M. Honda, D. Santry, and L. Eggert, “StackMap: Low-
Latency Networking with the OS Stack and Dedicated NICs,” in 2016
USENIX Annual Technical Conference (USENIX ATC 16). Denver, CO:
USENIX Association, 2016, pp. 43–56. [Online]. Available: https://www.
usenix.org/conference/atc16/technical-sessions/presentation/yasukata

[31] D. A. Wallach, D. R. Engler, and M. F. Kaashoek, “ASHs: Application-
specific Handlers for High-performance Messaging,” in ACM SIGCOMM,
1996.

[32] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia,
M. Munafò, K. Papagiannaki, and P. Steenkiste, “The Cost of the "S" in
HTTPS,” in CoNEXT, 2014.

[33] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman, “Analysis of
the HTTPS Certificate Ecosystem,” in ACM IMC, 2013.

[34] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “Blindbox: Deep packet
inspection over encrypted traffic,” in ACM SIGCOMM, 2015.

[35] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis, J. Blackburn, D. R.
López, K. Papagiannaki, P. Rodriguez Rodriguez, and P. Steenkiste,
“Multi-Context TLS (mcTLS): Enabling Secure In-Network Functionality
in TLS,” in ACM SIGCOMM, 2015.

