RWNTH COM

SYS

Implementation of a
OneAPI-REST interface for
integrating web services

in an IMS-based
telecommunication network

Bachelor Thesis
Jens Helge Reelfs

RWTH Aachen University, Germany

Chair for Communication and Distributed Systems

Advisors:

Prof. Dr.-Ing. Klaus Wehrle
Prof. Dr. Bernhard Rumpe
Dr. rer. nat. Dirk Thiflen

Registration date: 2nd Dec. 2010
Submission date: 30th Mar. 2011

I hereby affirm that I composed this work independently and used no other than the
specified sources and tools and that I marked all quotes as such.

Ich erkldare hiermit, dass ich die vorliegende Arbeit selbstéindig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Aachen, den 30.03.2011

Abstract

Latest development shows that telecommunication providers merge their networks
into all-IP-based networks. For this pupose, IMS (IP-Multimedia Subsystem) has
been introduced. The architecture allows to deploy application servers providing
several telecommunication services ontop of the IMS.

Motivated by the rapidly growing popularity of Web 2.0 applications and the emerg-
ing market with value added services on mobile devices, there have been introduced
standards to combine the telecommunication and internet domain. The most recent
standard is OneAPI which defines some key services in a RESTful design. REST-
ful Web Services are kept small by directly using the HT'TP’s protocol mechanisms
which makes them very efficient.

This thesis shows a prototype implementation of a generic REST interface, and
a gateway module translating between specific OneAPI and REST messages on a
JAIN SLEE AS being an event driven platform. To perfect an example of the
complete vertical communicationg through this AS, we also present an SMS service
implementation.

A brief overview of a performance evaluation is given and the results are discussed.

Acknowledgments

I thank Klaus Wehrle for being my first supervisor and giving me the opportunity to
realize my bachelor thesis at the Chair for Communication and Distributed Systems.
I thank Bernhard Rumpe for being my second thesis supervisor.

I especially thank Dirk for doing a great job as my advisor and his kind character.
I thank him for all the good times when discussing several topics and approaches in
relation to the thesis’ topic.

I thank all my friends and my brother who willingly proofread this thesis. 1 also
want to thank my housemate Thomas for lending an ear whenever needed.

Last but not least, I thank my parents for giving me as much support as possible
during my entire bachelor studies. I also want to thank them for having so much
confidence in me.

Contents

1

2

Introduction

1.1 Challenge

1.2 Outline.

Background

2.1 Telecommunication Services
2.1.1 Examples
2.1.2 Service Composition and Third Party Access

2.2 IP Multimedia Subsystem

2.3 Web Services
2.3.1 Representational State Transfer
2.3.2 RESTful Web Services
2.3.3 Classic Web Services versus RESTful Web Services

2.4 Standards

2.4.1 Parlay/OSA and Parlay X
242 OneAPI oo
2421 Version 1.0 oo

2422 Version 2.0 oL

2.5 JAIN Service Logic Execution Environment
2.5.1 Resource Adaptors,
2.5.2 Service Building Blocks and Services
253 Events
2.5.4 Acitivities and Activity Contexts

2.5.5 Profile Tables and Container Managed Persistance Fields . . .

2.6 Summary

10
10
11
12
13
14
15
15
16

3 Related Work

4 Design

5 Implementation

5.1 Short Messaging Service
5.2 OneAPI Library and Events . .
5.3 Gateway
5.3.1 Formats
53.1.1 XML

53.1.2 JSON

5.3.2 Message Translation . .
5.3.3 Outgoing Requests . . .
5.3.4 Incoming Requests . . .

5.4 REST Resource Adaptor

6 Evaluation
6.1 Tools
6.2 Setup.
6.3 Results.
6.3.1 Sending SMS
6.3.2 SMS invocation

6.3.3 Notification subscription

7 Conclusion

Bibliography

19
19
20
20

23

27
27
30
31
32
32
33
33
34
36
37

39
39
40
41
42
43
45

47

51

Introduction

Over the last several years, telecommunication providers have experienced massive
changes on their networks and the whole telecommunication market. In the past,
providers had been responsible just for transporting data through their networks,
but this has changed. Nowadays they turned into service providers in addition to
the classical data transportation.

The outdated circuit switched networks have been substituted by packet switched
ones. This, in turn, merges to all-IP-based communcation into homogenerous net-
works which embodies a central access point to the network and enables the providers
to supply additional services instead of pure data transportation.

Such services may be e.g. a simple call-redirection or even more complex, a mailbox
application. They in general can use any additional available information provided
by the network which allows more convenient services (e.g. Location service for
mobile phones or Terminal Status).

End-user devices are becoming more powerful and are not restricted to voice commu-
nication anymore. With today’s mobile technology, internet is available anywhere
to nearly all mobile devices. Even the classical telephones turn into more powerful
devices which may provide functions e.g. for sending SMS.

There can be observed a current hype about “apps” for mobile devices that can be
downloaded from the internet. These apps make use of other internet services very
excessively (e.g. an application giving weather information provided by any third

party).

Both facts lead to the idea to join both domains, the telecommunication and the web.
For interoperability and open access, there have been introduced several standards
defining network services. The latest development on this topic is OneAPI. OneAPI
defines some elemental services and is designed to expose these to the web. This is
done via RESTful Web Services.

2 1. Introduction

The exposure enables third parties (or the telecommunication provider itself) to
set up far more sophisticated services which are compositions of these key services.
This has a positive effect on three parties. End-users get more convenient and
intelligent services provided by any third party which will probably charge its usage.
Furthermore the telecommunication provider benefits from these services as well.

1.1 Challenge

The main challenge we address in this thesis is to create an architecture to implement
telecommunication services. This architecture is restricted to be deployed ontop of
an IMS system as the underlying communication network. The most attention will
be given to the external interface defined by the OneAPI specification. It belongs
to the familily of the RESTful Web Services which introduce a specialized way on
how to access data and modify it. Furthermore a RESTful service predetermines
the communication procotol.

This means we are supposed to create a RESTful interface which has to be brought
into accordance with the OneAPI service specifications. Thus, we also have to
translate generic REST requests into specific OneAPI requests that determine the
addressed service and its methods, and of course, the other way round.

To get a better impression of the posposed prototype’s performance, it has to be
tested at different loads. For this purpose, there is also need to create at least one
actual OneAPI service that uses the newly introduced interface.

The tests are expected to spot possible bottlenecks and possibly how to eleminate
these and to enhance the whole system.

1.2 OQutline

Chapter 2 introduces some basic knowledge about telecummunication networks, ser-
vices, standards and the platform used in this work.

Chapter 3 presents some approaches related to work described in this thesis.
Our design of the OneAPI REST interface is discussed and presented in Chapter 4.

This leads to the actual implementation described extensively in Chapter 5 intro-
ducing an SMS service and details on the different parts of the interface, namely the
message translation and Resource Adaptor.

This will be completed with a performance evaluation and some discussion of the
results for the proposed implementation in Chapter 6.

In Chapter 7 we give a conclusion and consider future work.

Background

At first, we will give some basic knowledge on different involved topics. These are
telecommication providers and services, the IMS as a core network and ontop of it an
application server for providing services. Some service architectures and interfaces
are introduced as well.

2.1 Telecommunication Services

Telecommunication describes the transport of information (e.g. audio, video or data)
with the purpose of communication. The classical telecommunication service as such
denotes the pure transport of data independently of actual content which is left to
the user. Telecommunication Service Providers carry telecommunication networks
to provide this service. Some examples are the telephone network or the internet.

One aspect in telecommunication networks is the introduction of Intelligent Net-
works (IN) which provide value-added services (i.e. telephone number portability or
prepaid calling) to conventional telephone and mobile networks owned by the service
provider. Nowadays especially when talking about the internet, these networks are
very complex and convoluted constructs of different providers. An interesting fact
is, that these networks have been converging in the past several years.

2.1.1 Examples

Audio. One of the first introduced and best known telecommunication service is
the transport of audio signals or better to say voice. The actual transmission had
been done a long time as an analogue signal, but for example with introduction of
ISDN in the 1980’s, this has been changed to digital transmission up to now in many
different ways. One of the most notably sector are mobile phones as an emerging

4 2. Background

market. Besides this, youngest development at service providers aims at merging
their networks internally to IP-based communication (Voice over IP).

Short Messaging. Another well known example is the Short Messaging Service.
This service is not only transport-related, but belongs to the scope of telecommuni-
cation services as well. Introduced as a feature of mobile phones, it is now available
to most telecommunication devices. It needs some more management by the service
provider, since messages have to be stored until their delivery or have to be delivered
to clients that are only capable of receiving audio.

In relation to SMS, the next generation Multimedia Messaging Service (MMS) should
also be mentioned. It enhances the SMS by the possibility to send multimedia con-
tents such as pictures or videos.

2.1.2 Service Composition and Third Party Access

These basic value-added services become more interesting by composition. Plugging
these services together enables the provider to build up more sophisticated services
and applications for an end user.

Very simple examples are SMS notifications about missed calls or new messages on
the mailbox.

A more complex scenario would be a stock notification application. It observes a
certain stock for which a user has subscribed. Whenever it reaches a predefined
value, the application tries to set up a call between the user and his broker. If this
fails, it is supposed to send a notification by SMS to the user. This service might be
charged all-inclusive at subscription time. The main elemental telecommunication
services involved here are something for a third party call, short messaging and
payment.

With today’s powerful mobile devices and internet flatrates, in times of the Web
2.0, there is a big market for infinite different specialized applications using telecom-
munication services. It is obvious that a single service provider is not able to serve
all these demands. Thus, a good solution is to expose interfaces to such elemental
key services in the telecommunication domain to third parties (i.e. via the internet)
enabling third parties to build up their own high-level specialized services.

2.2 |IP Multimedia Subsystem

To merge different networks and to enable providers to build higher level telecom-
munication services, the the IP Multimedia Subsystem (IMS) has been introduced
[7]. Tt is a collection of different specifications of the 3GPP (3rd Generation Part-
nership Project). It simplifies and standardises the access to services from several
networks. IMS is not meant to standardise applications as such, but getting easy
common access to a central control unit and merge different network types.

It can be splitted into the transport or media layer, the session control layer and
the application layer. The application layer can be used to set up services like those
provided by INs. We will not go in too much detail on this topic, thus figure 2.1
depicts a very simplified overview of the IMS architecture.

2.2. IP Multimedia Subsystem 5

Media/User Layer. IMS internally uses IP based communication, thus, an IP-
Backbone as a central unit connects all convergent networks. Access to the IMS is
mosty gained via direct use of IP (i.e. PDAs, SIP phones, mobile phones). Anyway,
other technologies such as Digital Subscriber Line (DSL), cable modems, mobile
access via GSM or GPRS as well as wireless access (WLAN) are supported. Tech-
nologies like cable switched networks (e.g. plain old telephone system) are supported
via specialized gateways.

Session and Control Layer. To manage all internal (IP-based) communication,
the Session Initiation Protocol (SIP) is employed. This control layer architecture
is motivated by and partly derived from classical GSM. It generally consists of the
Home Subscriber Server (HSS) and the Call Session Control Functions (CSCFs).
The HSS is a central database that holds all user and subscription related informa-
tion. It is responsible for user authentication, authorization and provides current
information about a user’s IP address and location.

The CSCF servers can be seen as a network or infrastructure to provide several
signaling and management functions. This can be seen analogously to routing and
switching in the OSI reference model. The most important are a central (per reg-
istration session persistent) proxy through which a user is reachable; a component
that is responsible for forwarding messages from remote IMS systems; and a unit
providing several management functions such as user registration.

Application/Service Layer. The IMS architecture also arranges application servers.
For communication, SIP is used as well. These ASs can provide any type of value-
added service or service compositions as mentioned in 2.1.1 and 2.1.2. Such an AS
may either be owned by the provider or a third party. Furthermore ASs can be cas-
caded by exposing network capabilities or higher-level services to other applications.

Application Layer

Application Servers

Sesssion/Control
Home Subscriber Server Layer

Call Session Control Functions

Fixed access networks IP-Backbone

|
Wireless access networks CS-network Gateways

Mobile access networks —
T Media/User Layer

Figure 2.1 Simplified IMS architecture. It can be subdivided into three different
Layers. Application servers and services are located in the Application
Layer. Signaling and user management are done on the Session and
Control Layer. The Media Layer combines different access networks
into an all-IP-based network.

6 2. Background

2.3 Web Services

To provide any service, there is need for an interface and a communication platform.
One widespread approach to these concerns are Web Services. First of all they
are application components which are mostly supposed to communicate machine to
machine. Thus, they are accessable via well defined interfaces and protocols. The
main goal of them are to assure interoperability by using HT'TP together with XML
as the typical platform. They are either used to create new reusable application
components (e.g. currency conversion or weather reports) or to connect existing
software. So they can provide a platform to link different applications independently
of their origin. The W3C defines Web Services generically as follows:

Definition 2.1. A Web service is a software application identified by a URI, whose
interfaces and bindings are capable of being defined, described, and discovered as
XML artifacts. A Web service supports direct interactions with other software agents
using XML based messages exchanged via internet-based protocols.

A typical Web Service architecture is defined by a service provider, consumer and a
directory service. Actual services can be discovered by a consumer via the directory
service. This is done by the client looking up a service at the directory server which
responds a Web Service Description Languare (WSDL) file defining the service’s
functions and access interface. With this information about the service, the client
then is able to send a request encapsulated in a Simple Object Access Protocol
(SOAP) envelope to the service provider. SOAP uses HTTP for transport. These
SOAP messages can contain any XML content representing an actual request. After
receiving such a request, the server sends the corresponding response according to
the WSDL definition also encoded in XML and encapsulated into a SOAP message.

2.3.1 Representational State Transfer

Web Services are very powerful, but we have seen that they introduce much overhead
by encapsulating the actual data into SOAP envelopes.

To minimize network communication while maximizing scalability and independence
of implementations, the Representational State Transfer (REST) has been introcued
by R. Fielding [8]. It is an architectual style meant for distributed media systems and
has been developed in parallel to HTTP/1.1. The communication participants must
be at least a client and a server whereas proxies or gateways can be involved. A client
sends requests to certain resources and the server gives an appropriate response.

REST is defined by four different interface constraints. These are manipulations of
a resource via representations, identification of them, self-descriptive messages and
hypermedia for transport.

Resources in general are an abstraction of any “thing“, that should be exposed. This
can be a document, a service (e.g. “today’s weather in Aachen“) or a nonvirtual
object like a person. A client does not access resources directly, but uses represen-
tations of it which can be seen as a mapping.

These resources are addressed via their unique resource identifier. The identifier
should be self-explaining for a more natural understanding.

2.3. Web Services 7

Data element RESTful Web Service

resource identifier URI

control data HTTP method or response code
resource metadata source-link, alternates
representation metadata media-type, last-modified time
representation XML document, JPEG image

Table 2.1 Elements of a REST message and corresponding examples for RESTful
Web Services

To perform actions on a specific resource, representations of this resource are used.
Such representations consist of some metadata (e.g. last modified date, media type),
can contain metadata for integrity purposes, and an actual representation of the re-
source as a byte-sequence. Additionally there is control data included defining the
requested action on the resource; or, in case of a response, its semantics.

Another key aspect of REST is its statelessness. In fact all requests contain all in-
formation neccessary to perform the requested action independently of any previous
request. This leads to several key benefits. No processing entity needs to store state
related information resulting in lower physical resource usage and higher scalability.
Requests can be processed in parallel giving better performance. Furthermore re-
quests with its answers can be seen isolated enabling simple caching.

Example. The largest and best known example for REST-based communication is
the World Wide Web. The communication here is done via pure HT'TP where the
requested URI (Universal Resource Identifier) defines the resource, the method and
response code denote the control data, additional headers provide metadata and the
actual resource representation is contained in the message body.

Note: This communication is mostly stateless as defined at REST, except cookies
and some security issues at user authentication (see [14] for more detail).

2.3.2 RESTful Web Services

A RESTful Web Service is typically a service implemented using HTTP in a REST
style. The resources are identified and addressed by a URI. The requested action is
determined by the HTTP-method. The responses make uses of the typical HT' TP
response codes. An overview of the methods and response codes can be found at
figure 2.2. The general structure of a message in this context is found at table 2.1.
More detail on the different possible actions is given in the following listing:

e The GET method is used to request information about a certain resource. The
response will contain the acutal representation, its metadata and optionally
resource metadata. Such a request does not include any representation of a
resource.

e PUT requests an assertion of a resource. The server tries to change (or even
create) the resource to match the containing representation. Note that such a
request typically should contain specified values instad of relative information
(e.g. set the value to 10 instead of increment the value by 5).

8 2. Background

e In contrast to PUT, the POST method requests to create a new resource out
of an existing one. This relation might be a child relation in a datastructure-
view. The main difference between POST and PUT is, that with PUT, the

client needs to be able to compute the new resource’s URI.

e DELETE is used to remove a certain resource.

These web services are not always stricty stateless as defined by the REST archi-
tecture. A server might store some application related state information such as
authentication credentials, but if, every request has to contain this information.
The resource will be represented in a common media type like XML or JSON.

Note: RESTful Web Services do not use a directory-server as it might be the case
at classical Web Services.

Method Description Resp. code Description
GET retrieve data from a certain 200 OK
resource 201 Created
POST create a new resource 204 No Content
PUT update an existing resource 400 Bad Request
DELETE remove a resource 404 Not found
503 Service unavailable

Table 2.2 HTTP methods and selected responsecodes used at RESTful Web Ser-
vices. The HTTP protocols functionalities are directly utilized.

2.3.3 Classic Web Services versus RESTful Web Services

We have introduced the classical and RESTful Web Services. Both are used to set up
reusable application components based on HTTP for communication. They provide
interoperability independently of the used platform or vendor.

The main difference is, that in RESTful architectures, all information is packed into
the actual HTTP message. They make direct use of commonly known functions of
the HTTP protocol. This includes the control data (i.e. at requests, the method
information; at responses, the response code), the identifier via the URI as well as
possibly a resource representation in the message body. This means, that already
the first line of a HTTP request can determine what a client wants to do (e.g. "GET
/document.txt HTTP/1.1%).

In contrast to this, the classical Web Service approach uses HT'TP just for transport
purposes. The actual data is ecapsulated into an envelope (e.g. SOAP) which is
put into the HTTP message body. The request or generally method information are
kept inside this envelope. In addition to this, the format of these messages introduce
complete new vocabulary defined in the service related WSDL file [14].

2.4. Standards 9

Conclusion. Summing the facts up, classical Web Services present a very powerful
interface with extended possibilities by defining completely new individual messages
with its own vocabulary, but this results in overhead in two ways. The messages need
more network bandwidth by the protocol overhead because of the encapsulation of
the actual data into an envelope. Moreover the parsing of the messages becomes
computationally more expensive.

A compromise between power and resource usage are the RESTful Web Services.
They use the HT'TP protocol functionalities directly and put the actual data into
the HTTP message body without any additional envelope. As a result, the REST
messages are smaller compared to a comparable SOAP message, which results in
less bandwidth usage. Keeping the different possible functions very small (e.g. we
only can use the typical HTTP methods at requests) causes less expressiveness.
Nevertheless, the outcome of this is normally that we do not need as much cpu-time
as it is the case at classical Web Services.

2.4 Standards

As telecommunication providers nowadays are very interested in serving value-added
services to their customers and there is even need to expose elemental key services
to third parties, there has been a couple of standards developed over the past ten
years.

We will now introduce the most important ones defining interfaces for different
telecommunication services. They guarantee interoperability between varying ven-
dors and platforms, as well as enabling third parties to use the defined services
particularly to create more sophisticated applications. Togehter with IMS, they de-
fine the foundation to the general concept of opening the telecommunication world
towards the web.

2.4.1 Parlay/OSA and Parlay X

The Parlay OSA specifications are one of the first published standards to define
interfaces to telephone network services at all, but on a very low level. The aim is to
give developers an open common interface for network features independently of the
specific underlying network. It has been defined by a consortium of several industry
vendors called Parlay Group. It was founded in 1998 and ended about 2007. There
was hope that IT developers rather than telephony experts can build services.

A more abstract approach to this is the Parlay X specification [1] introduced in
2003, that opens the telecommication world to the internet via Web Services. The
Parlay X API set is much simpler (and hence, less powerful), but had impact on
the developer community to grow. Most important services defined by Parlay X can
be found at table 2.3. The work on Parlay X has ended in 2007 with its version
3. However, it has been taken over by the Open Mobile Alliance (OMA). Latest
progress has resulted in the second version of RESTful (see RESTful Web Services
at 2.3.2) bindings for some of the parts of Parlay X.

10 2. Background
Part Name Description
1 Common definition of common data objects
2 Third Pary Call third parties initiate a call between two participants
3 Call Notification notifications for calls and their handling
4 Short Messaging send and receive short messages (SMS)
5 Multimedia Messaging send and receive multimedia messages (MMS)
6 Payment simple reservation and charging of amounts/volumes
8 Terminal Status get status of a terminal/user

9 Terminal Location
10 Call Handling
14 Presence

get geographic location of a terminal or group
setup rules for call handling
get presence information of a terminal

Table 2.3 Some selected services defined by Parlay X

2.4.2 OneAPI

Having published the RESTful bindings for some Parlay X parts, OneAPI defines a
subset of these aiming to give open access to network capabilities and information
via the web, regardless of the operator more easily. OneAPI is group founded by the
GSM Alliance (GSMA) in cooperation with the OMA. This collaboration has revis-
ited the Parlay X specifications and the associated RESTful bindings and published
a subset as OneAPI. The idea is to create a far more easy API for web developers in
a RESTful architecture resulting in RESTful Web Services for some parts of Parlay

X.

2.4.2.1 \Version 1.0

After a testing period of a pre-version, the Canadian Plot (v0.91), the group released
the first specification. This contains interfaces for

e Short Messaging: Send and receive textual short messages

e Multimedia Messaging: Send and receive multimedia messages

e Payment: Charge and reserve amounts

e Location: Get the geographical location of a terminal or group

The mappings from the Parlay X RESTful bindings to OneAPI can be found at [10]
whereas the actual RESTful interface is defined in [12]. Note that OneAPI version
1 also includes the classical Parlay X SOAP APIs for the mentioned services.

2.4. Standards 11

2.4.2.2 Version 2.0

In addition to the services of version 1, the second version released in february 2011
introduces the following new APIs:

e Voice Call Control: Create a call between multiple users, notify about call-
events

e Data Connection Profile: Retrieve information of the end users connection
type and roaming status

e Device Capability: Retrieve information of a device

These are in based on the Restful Parlay X bindings at version 2. OneAPI version
2.0 correlates to the newer version of the bindings as it defines a subset of these
as well. There are currently no additional SOAP bindings available for the newly
introduced services.

12 2. Background

2.5 JAIN Service Logic Execution Environment

The JAIN Service Logic Execution Environment (JAIN SLEE or SLEE) [16] defines
an architecture meant for communication applications. It specifies a component
model for building structured reusable object-oriented logical blocks. These can be
composed to set up more sophisticated services. In addition, the specification defines

several standard facilities such as a timer and tracer. The latest release is version
1.1.

In particular it can be used ontop of an IMS system to enable providing services
as defined by the mentioned standards (e.g. Parlay X and OneAPI) or even more
complex ones.

Management Application

i JSLEE

Management Framework Component Model
JMX Agent Alarm Facility Lifecycle
Deploment Timer Facility Invocation semantics

Lifecycle management Trace Facility Events
Profile management Profile Facility Packaging
Statistics Event Router Deployment format
Lookup
Resource Adaptors and resource APls

X
v

Event Sources

Figure 2.2 JAIN SLEE architecture overview. It can be subdivided into four
cornerstones: the Management (e.g. deployment and lifecycle man-
agement), the Framework (e.g. timer facility and event router), the
Component Model (e.g. defining SBBs) and the Resource Adaptors
(interface to external resources).

A SLEE is an application server (AS) which acts as a container for the software
components. The architecture is optimized and designed for asynchronous or event
driven applications (EDA). These applications receive their requests in the form
of events. Typically there is no active thread for execution, but there are handler
methods defined for different events that will be executed. These handler methods
are allowed to make use of resources and emit new events.

The SLEE architecture can be subdivided into three major internal subsystems seen
at figure 2.2 taken from [9]. For communication with external components, there
are Resource Adaptors to be set up, that act as an interface between the SLEE and
these external resources.

e Management provides functions for deployment, lifecycle management, pro-
file management as well as statistics. These functions can be accessed internally
as well as externally via Java Management Extensons (JMX).

2.5. JAIN Service Logic Execution Environment 13

e The Framework provides several standard functions to be used in applica-
tions. The most important ones are the following:

— Alarm facility: This facility is used to notify management applications
about certain events. These may be unexpected states (e.g. a database
connection failure).

— Timer facility: With the timer facility it is possible to trigger periodic or
delayed events. As soon as the timer expires, a new event will be thrown
by the SLEE on which an application can react.

— Trace facility: This facility provides trace functionality. The trace mes-
sages can be observed and analized by external applications. The number
of genereted messages depends on the set log level.

— Profile facility: The profile facility allows to store application relevant in-
formation inside the SLEE. It builds up user-predefined tables and enables
the usage of static SQL queries. The information can then be managed
easily.

e A Component Model provides infrastructure for checking and deploying
the actual application’s service logic implemented by Service Building Blocks
(SBBs). It is responsible for building the runtime environment where whole
SBB trees are instantiated in containers. It performs the setup of the event
handlers and is responsible for lifecycle related management jobs as well as the
actual event routing and delivery.

2.5.1 Resource Adaptors

Resources represent external systems to the SLEE. Some examples are network de-
vices, protocol stacks and databases. These can have Java APIs which are internally
represented by events. SLEE applications are able to interact with such resources
via Resource Adaptors (RAs) building an interface to these. The RAs define all
needed functionalities to adapt a resource for the SLEE’s needs. A RA consists of
the following main concepts:

e Resource Adaptor type. The type declares common characteristics for a set
of RAs. It defines all interfaces that a RA implements. It also defines event
types for events that can fired into the system.

e Resource Adaptor. This is the actual resource adaptor implementation of one
or more RA types. (This means it is allowed to have multiple implementations
for the same type.) It also includes all needed Java classes that represent the
actual resource to adapt.

e Resource Adaptor entity. An entity is an instance of a RA. There are multiple
instances allowed, for example it is possible to set up multiple instances of the
same particular RA on different IP addresses or ports.

e Resource Adaptor object. The RA object is the instantiated RA class that is
used by the SLEE to interact with the RA entities.

14 2. Background

e SLEE endpoint. To interact with the SLEE, the endpoint declares an interface
for a RA to create new acitvities and fire new events into the system. It is
implemented by the SLEE.

2.5.2 Service Building Blocks and Services

Service Building Blocks (SBBs) each define logical blocks providing a set of special-
ized functions.

Components are an abstract declaration of an SBB including what events will be
received and fired. Thus, it defines which methods are implemented that can be
invoked by the SLEE. Furthermore it defines which libraries are used. Components
can be linked together into an entity-tree consisting of several logical blocks. Each
component belongs only to one entity at a specific point in time.

An entity tree with its root node typically defines a complete service. It is important
to point out that the entities define a logical relationship whereas objects are assigned
to an SBB entity dynamically. At runtime, they have a lifecycle and thus, they have
to cache stored information for each entity they are used in.

This means, that services can be created out of different small blocks or modules
each doing a specialized job.

In order to cumminicate with any external device, SBBs use Resource Adaptors. For
this purpose, one has to bind a RA to the SBB and implement methods to handle
the desired events emitted by this RA.

Does not exist
A

new instance
setSbbContext

\ 4
sbbExceptionThrown
P Q Pooled
sbbCreate

A sbbRemove
sbbPostCreat
sbbActivate sbbPassivate
Y

Ready

unsetSbbContext

sbbLoad sbbStore

Event handler method invocations
SBB Local method invocations

Figure 2.3 SBB object lifecycle. SBBs are pooled inside the SLEE. This saves
instantiating time because of reusing them, but introduces some man-
agement overhead. If there is no available instance in the pool (Pooled),
a new SBB has to be instantiated. These new instances or other pooled
SBBs get aquired to be used in an entity of a service (Ready).

Lifecycle. SBBs instances are managed by the SLEE in a pool. New one are only
instantiated by the SLEE when needed. Such instances are called Objects. When-
ever an object is created, it changes into the Pooled state. Pooled objects can change
their status to Ready by activating or creating. They get Pooled again by passivat-
ing or removing when they are not needed anymore. At Ready state, methods can
be invoked either by receiving an event or by another linked SBB. Here it is also

2.5. JAIN Service Logic Execution Environment 15

possible to load and store information. The corresponding state machine can be
found at figure 2.3.

2.5.3 Events

Events represent transition changes or occurrences of significance and are defined
by an event type and an event object. They can be fired from inside or outside the
SLEE. Event producers can be either inside, SBB entities, the SLEE facilities, the
SLEE itself; or RAs entities (outside). Events convey any infomation encapsulated
in the object itself.

Corresponding event consumers are SBB entities only. For this reason they imple-
ment handler methods for the different event types.

Such an event object is an instance of an event class. The event type is defined by
deployment descriptors being independent of an actual class. When firing an event,
the application has to give information about its type by which the SLEE determines
how to route this specific event, i.e. which SBBs will receive it and which handler
methods to invoke.

2.5.4 Acitivities and Activity Contexts

The SLEE specification introduces activities representing an event bus for each on-
going process/action. Any event must be fired on an activity which acts like a
communication channel. The related important terms are:

e Activity. An activity is a logical entity defining a process or stream of one
or more events. For example it can represent a communication channel inside
the SLEE towards a resource (i.e. an incoming TCP connection at a RA).
State changes to this resource typically result in an event that gives related
information.

e Activity Object. An activity object is the java representation of an activity.
They are created either by a RA entity or a SLEE facility. The actual object
defines an interface for interaction with underlying activity.

e Activity Context. An AC represents an acitvity by encapsulating the activity
object. It is a logical entity as well that enables the application to send and
receive events on an activity. It also holds and gives access shareable attributes
between different SBBs.

e Activity Context Interface object. Each AC is accessed by an SBB trough
an interface object. This interface may be the generic ActivityContextIn-
terface or a specific SBB local Actvitivy Interface which allows to define
shareable attributes to use between different SBBs on the same context.

SBB entities use an ActivityContextInterface object to gain access to the actual
Activity Context. There can be many of these interface objects each used at different

16 2. Background

entities. Every interface object has a particular Acitivity Context where it belongs
to being identified at the resource domain by the Activity Handle. Each Activity is
represented by an activity object being identified in the SLEE and Resource domain
by such a handle. These relations are shown in figure 2.4.

Besides the activities created by RAs or facilities, the SLEE also provides Nullactiv-
ities that are used as a private event bus for communication between different SBB
entities.

SBB
0.m

0..n

SBB attaches to
Activity Context

Activity Context Interface

1 The actual ACis

1 accessed via ACI
Domain

L The AC is identified by

1 the Activity Handle

Activity Handle
1
1

Activity Object
1

1 R Activity Object is a Java
@ esour(.:e representation of the Activity
Domain
Figure 2.4 Activity Context and the connection to Activity Objects (ellipses de-
note logical entities, rectangulars actual java objects)

The Activity Handle identifies
the Activity Object to the SLEE

2.5.5 Profile Tables and Container Managed Persistance Fields

It is often important to store information about an ongoing activity. Since the SBB
objects are pooled instances being reused at different activities, it is not possible
to store such information directly inside this object. For this reason, the SLEE
architecture provides two different methods to store persistent information. These
are the Container Managed Persistance (CMP) fields and the Profile Tables.

CMP fields are a set of variables defined in the SBB component. These fields are
virtual fields only that can be accessed via a getter and setter method which are im-
plemented by the SLEE. Their possible values are restricted to Java primitives, Java
serializable types and SLEE specific interfaces (e.g. Activity Context Interfaces).

Profile Tables can be used to store more sophisticated related data. In contrast to
the CMP fields, a profile is a set of related variables. These are grouped and managed
in profile tables. Access to the profile tables is gained via the Profile Facility that
can be accessed either by SBBs or RAs. It is possible to define static SQL queries
in order to get specific entries of interest.

2.6. Summary 17

2.6 Summary

Now we have introduced background information for our work. We have seen what
a telecommunication service is and some examples. Another fact is, that telecom-
munication networks have been converging the past several years. A good solution
to this process and enabling a provider to create value-added services, is the IMS as
an interconnection backbone with control functionality.

The raised standards of the Parlay family and the newest development, namely
OneAPI, define elemental services and their interface. OneAPI specifies elemental
services (e.g. Short Messaging, Terminal Location, Payment) which are exposed
to the web as RESTful Web Services. The RESTful approach is simple with low
protocol overhead by using the HT'TP protocol’s functionality directly to determine
the requested action (e.g. GET, POST, DELETE) or the kind of response (e.g.
200 OK, 404 Not found). The actual message payload is diretly packaged into the
message body without any additional container. Furthermore, the typical encoding
format for the messages is XML or JSON which are commonly used, simple and well
known.

These services are typically facilitated at application servers which are integrated in
the IMS architecture. For this purpose, especially in the telecommication domain,
the JAIN SLEE AS can be used. It is a specialized event driven platform and thus,
is supposed to handle many of events/processes quickly and in parallel.

For communication in general, the SLEE uses events. They denote any occurence
of significance. They can be received and handled by SBBs, that are single reusable
software components. SBBs can be set up into trees building a complete service. To
communicate with external resources (e.g. a database), the SLEE uses RAs. They
translate external bevahior into events that can be used inside the SLEE and enable
SBBs to send some specified data towards the resource (e.g. an SBB requests a
database RA to handle an SQL query - the database’s response is fired as an event).
Each ongoing process in the SLEE has an underlying activity held either by a RA or
the SLEE itself. These activities can be seen as communication channels inside the
SLEE, an event-bus respectively, where events are fired on (i.e. put onto the bus).
Activities are accessed by SBBs via a context interface. To trigger a new service
instance, SBBs can declare events as initial (e.g. a service declares a request-event
as initial, but not the response-event).

This means we have our IP based IMS network with its control functions. This
architecture allows a JAIN SLEE AS set ontop communicating towards this network
via SIP. Various telecommunication services can be implemented on this AS and
exposed towards the web as RESTful Web Services.

18

2. Background

Related Work

3.1 Parlay X and SOAP

The idea using an event driven platform for telecommunication services is for ex-
ample introduced at [5]. The dissertation focuses more an context-awareness, which
means using network information about a user to provide extended services. Related
to this idea and the JSLEE as the used platform, there has been work on implement-
ing parts of the Parlay OSA [15] and Parlay X [9] specification. It turned out, that
the Parlay OSA interface is powerful, but does not allow non-telecommunication-
experts to create services easily. With the Parlay X interface using the underlying
Parlay OSA functions, we see a lot of non-neccessary overhead.

We decided to give up on these ideas and create the new OneAPI interface more or
less from scratch, i.e. eleminate the Parlay OSA layer. Thus, there exist only small
artifacts that are helpful or can be reused.

Parlay X Library. In [9] there is a Parlay X library introduced. It models the
function calls of the different services defined by the Parlay X specification. The
original library did not represent these funtion calls as events inside the SLEE. The
information was delivered each in an encapsulating SOAP event. Thus, it was not
possible to distinguish between different function calls, but we only have a generic
event on which a service can react.

To eleminate this shortcoming, the library has later been restructured into two seper-
ate parts. On the one hand, we have the actual function calls with its corresponding
responses acting as events for the SLEE. On the other hand, we have several common
datasctructures and datatypes that are commonly used within these events. This
will be discussed in more detail at chapter 4 and section 5.2.

SOAP Resource Adaptor. There has also a generic SOAP Resource Adaptor
been developed. It is able to handle simple HT'TP connections and parsing a SOAP-
message out of it. Incoming SOAP-messages are fired into the SLEE, whereas it is

20 3. Related Work

also possible to send outgoing messages either via an existing activity or by gener-
ating a new activity at outgoing requests. It also includes some conveniece methods
like a SOAP-factory that is used to set up new SOAP events.

3.2 GSMA OneAPIl implementation

In february 2011, the OMA released a project that implements OneAPI version 1.0
(SMS, MMS, Location and Payment) [11]. This implementation contains a server
and several different client parts.

Server. The server part is written in Java to be deployed as Servlets in a normal
JEE Application Server. There is a common Servlet that provides methods for some
parsing purposes, request validation, error handling and to send responses. Each
service has own Servlets (inheriting from the common Servlet) each implementing
an actual service-method. An incoming request gets validated and a predefined
dummy-response will be given back. For parsing the messages, the Jackson JSON
library [18] is used.

Note: This implementation does not provide any further processing, but only the
actual REST interface.

Client. The client implementations provide methods for invoking the OneAPI ser-
vices offered by the server. Till now, the project contains several client implementa-
tions written in Python, Ruby, Java and PHP. All of these implementations provide
methods for the different OneAPI service-funtions. The requests and responses are
each modeled as objects which include the logic to process them (i.e. message setup,
validation and error handling).

3.3 seekda!

The seekda GmbH provides several commercial web applications. One interesting
service is their Web Services search engine [3]. The engine crawls the internet for
Web Services and their WSDL files respectively, like google does for example with
web sites. They claim to have the largest collection of Web Services known. As
the crawler has already been set up in 2006, they provide some rude statistics on
publicly available services. The number of crawled Web Services has rapidly been
increasing in about 2007. After reaching more than 25,000, this level has slightly
grown over the past few years to currently nearly 29,000 Web Services by nearly
7,000 different providers.

The services in the scope of seekda are classical Web Services only. Nevertheless,
their statistic shows an enormous growth and popularity of this technique. Reasons
for this might be the handiness and interoperability. Because the RESTful Web
Services can be considered as way simpler, their popularity will probably have been
growing as well.

3.3. seekdal 21

In relation to these numbers, it seems that Web Services in general are nowadays the
new widely accepted de facto standard to provide any kind of service to third parties
via the internet. This definitaly argues for exposing telecommunication services
as Web Services. At this point, OneAPI comes in. It defines interfaces for the
telecommunication services as RESTful Web Services.

22

3. Related Work

Design

The challenging task is to create an architecture to implement telecommunication
services. For this purpose, we use a SLEE application server which is associated to
an IMS. This architecture should be simple, easy to understand, extendable, high-
perfomant and of course doing its job.

With concern to these constraints, there are some key questions to be answered:

e How to build the interface from the internals of the application server to the
external network

e How to implement service calls and answers
e How and where to distinguish between different types of messages or services
e What addressing scheme to use

e How and where to decide what content-format to use

The interface design from the external network into the application server and the
other way round is given by the SLEE, this will be a Resource Adaptor. As RESTful
services use HT'TP’s addressing and its body as the transport layer for payload,
there is need to have a Resource Adaptor that is capable to process these messages.
This adaptor requires to set up TCP connections for new outgoing messages and to
listen for incoming connections for new incoming requests. It is a decision to not
make this resource adaptor generic HTTP (these more or less already exist), but
encapsulate these messages into new REST messages. The reason herefore is, that
the purpose is not being a generic fully-implemented hypertext client and server
typically listening on port 80, but understanding these special messages. Another
reason is to distinguish interally between simple hypertext and RESTful services in
the future.

24 4. Design

With RESTful services, we always have a request-response combination like function
calls (the response may be void though). To model this on the event-driven platform,
we use for each function call two events - the request and its corresponding response.
These can be either incoming (initiated from an external user) or outgoing (initiated
by the application server, i.e. one of its services). As a consequence, we introduce
two types of events for the resource adaptor - a request and a response.

Each call takes place in an own activity which starts with the initial request and
is terminated with the response. To distinguish between incoming and outgoing
requests and responses, these activities are split accordingly.

A key question is how to distinguish between different types of messages and their
corresponding service. Ealier work has proposed using a generic event that encap-
sulates a certain message. The services that are interested in only few specific types
of encapsulated messages have to react on each generic event looking into it to de-
termine if it is of any further interest. This works fine for only few services, but as
soon as this number increases, this leads to a considerable overhead.

To eleminate this obvious shortcoming, we have to add information (i.e. a specific
type of an event) at some point. This can either be done directly by the RA giv-
ing it the responsibility to know and recognize all specific event types, or we use
a translation unit, that takes the generic events as a single instance and fires the
corresponding specific event furhter into the system (and the other way round). The
second idea sounds much more reasonable, since a generically held RA will be more
beneficial in the future and it will not be overloaded with the translation logic.

For this pupose, we intodruce a gateway module. Its main task is to receive REST re-
quests from the resource adaptor, decide on the encapsulated HTTP data (preferebly
on the header information) what kind of specific message is included and translate
it into a new specific event to give it further into the system. To ensure that not all
services receive all incoming REST messages (with which they maybe cannot deal
at all), we use a specific event-pair (request and response) for each method of each
service. It also has to translate responses from the system into REST responses
respectively and hand these over to the resource adaptor.

The other way is to translate requests from internal into REST requests and give
these to the resource adaptor. Here it has to save the information of the activity
that is started by this action and wait for the answer to give it back into the system.
As OneAPI must implement at least XML and JSON as payload data format, it has
to be able to handle both. For convenience, the payload translation is dealt by a
seperate library which may be used at clients as well.

Addressing and content format is only reasonable for outgoing requests. The service
is determined by the type of the specific event. Incoming requests define by themselve
in what data format they are encoded and the target address for further processing
is defined in the payload and not of interest here.

Answers to these requests will be send on the same activity, which means back to
the sender. The data format for these are predefined either chosen by a default
value or defined by the previous related request (which has to be remembered by
the gateway).

More interesting are outgoing requests. Here we use the SLEE capability for defining
addresses for events. Messages supposed to be send, must include an address-URI
starting either with XML or JSON as these define here uniquily to be send via the

25

REST interface. The host part of the URI determines where to send the request,
that means where the resource adaptor should send the actual HT'TP request. The
answer to this will come back on the activity started by the invocation.

The actual application logic is implemented in SBBs. At [9], it turned out using
different SBB entities communicating via an internal private communication bus
(i.e. Nullactivites) compromises better reusability for the different modules, but
adds heavy overhead by creating these activities. Thus, the SMS service is packed
into one single entity.

For external communication, this SBB uses the new REST-RA amd the SIP-RA,
that is already provided by the used mobicents [21] platform.

The state and service related information will be kept in CMP fields and Profile
Tables.

26

4. Design

Implementation

The main task was to build the OneAPI interface on the SLEE architecture. As dis-
cussed before the key elements are the gateway module and the Resource Adaptor.
To represent the different function calls respectively the messages for the services,
we also introduce a library for these data structures. To have at leat one service for
reasonable tests and to show the whole vertical communication, we also implemented
the Short Messaging Service. This section follows logically the communication up-
wards through the system. A first overview can be found at figure 5.1.

5.1 Short Messaging Service

The Short Messaging Service is implemented in the SLEE as one single SBB. It has
two different communication partners, on the one hand we have the mobicents SIP
resource adaptor which is the bottom interface towards the IMS; On the other hand
we have the gateway.

All data of this service is kept in two different tables realized by Profile Tables. One
keeps the information of the actual SMS (to send, sent or received) and the other one
keeps information about notifications. Using the SLEE’s internal feature to store
data is easy and provides fast access, since these tables are build up by an internal
database and are kept in memory.

As the SLEE dictates event-based behaviour of the components, we use a state
machine within each SBB-instance to keep track of the current status. For each
activity that is either started by the SIP-RA or comes from the REST-adaptor, the
SBB instance stores its state which then may be changed if a certain event occurs.

SMS-messages are represented towards the IMS as SIP messages with a MESSAGE-
header. All of these are supposed to be routed to our application server, since the
IMS cannot decide wether this message is of any interest for further use or not. This
means our SMS service has to provide basic functionality to forward these messages

28 5. Implementation

| End User |

—{ REST-RA }7 REST

\ 4
———+ Gateway |————— - -
A
OneAPI
Y
———{ SMS Service }————— --

A
Y

_‘ SIP-RA JAIN SLEE o

y

y
| IMS |

Figure 5.1 This diagram shows the whole vertical communication through the ap-
plication server. The communucation with the IMS is done via the
SIP-Resource Adaptor which is listening for SIP messages and firing
corresponding events into the SLEE. It is also able to send SIP mes-
sages towards the IMS. The actual services make use of this RA to
communicate downwards. Upwards we now use a new Event-library
representing the OneAPI methods. These Events are received and gen-
erated by the new Gateway which then translates these messages and
gives them further to the REST-RA. The REST-RA is responsible for
the actual HTTP communication with the end user.

towards their destination. This means incoming messages might be sent back into
the IMS - with or without being processed any further.

Besides this basic requirement, our service can be split into four categories of inter-
faces and accordingliy responsibilities: Send, Notification, Notification Manager and
Receive.

Send. The send interface provides two functionalities. First, we can send short
messages towards a list of SIP-recipients (Note: the recipients are restricted to SIP-
recipients since the IMS only provides this interface; other addresses need to be
mapped). The sending-request may provide a notification callback to get notified if
the message is or cannot be delivered. The response contains a unique message-id.
Another function is to ask for the delivery status.

Each request will be stored in the internal table and answered with the message-id
(see 1 at figure 5.2). The initial delivery status is MESSAGE WAITING. Afterwards
there is a new Nullactivity started for each recipient of this particular request and the
sending procedure is triggered on this (see 2 at figure 5.2). This means the settling
of the message is done and the request-activity will be ended. The actual sending
is then done on the new Nullactivity. New SBB instances then try to deliver the
message (see 3 at figure 5.2). If this ends with success, the delivery-status entry in
the table is updated to DELIVERED TO TERMINAL for this single recipient (see 5
at figure 5.2). Otherwise this procedure will be retried after a certain time (see 4 at
figure 5.2). The time period while the service retries to deliver a message is bounded
by the Retention time. If a message could not be delivered wihtin this time, the

5.1. Short Messaging Service 29

Alice IMS JAIN SLEE Bob

to Alice

Message-ip

——Register

oK

-« |

MESSAGE

<« |

200 Ok
L

)
N exceeded ./

Notifcation:
Delivered

Notification
Response

Figure 5.2 First a new SMS is sent to Alice by Bob. The message is stored by the
service and an answer with a unique message-id is given. The service
then starts a new activity and tries to deliver the SMS towards the IMS.
Alice is currently not registered and the message cannot be delivered
yet. After a retry interval, the delivery succeeds and the end user is
notified about this event.

acitivity will be ended and the delivery status is set to DELIVERY IMPOSSIBLE.
As soon as the delivery status is changed, the service checks wether to notify the
sender about this event (see 5 at figure 5.2).

The request for delivery status by a sender returns a list with the current delivery
status stored in the internal database.

Notification and Notification Manager are closely coupled. The notification
manager provides two types of subscriptions: message delivery and message notifi-
cation. The message delivery subscription overrides any given (or not given) callback
for the notification for sending sms via the send interface. This means at each time
the delivery status changes at the process of sending a message, the service checks
for delivery-subscriptions and if there are any, it uses these to provide actively the
new information.

The message notification subscription determines wether the application server stores
an incoming message. This subscription is uniquely defined by a list of recipients
and may have a specific criteria (this is an alphanumeric sequence with which the
message body is supposed to start with) (see 1 at figure 5.3). All incoming messages
are checked against these subscriptions. Is there a matching one, this message will be
stored and answered to be successfully DELIVERED TO NETWORK in OneAPI
terms or in SIP terms with the response code 200, OK. If the subscription provides
a callback, a notification about this new message will be sent immediately (see 2 at
figure 5.3).

Besides setting up new subscriptions, this interface also provides functions to delete
subscriptions identified by their unique id.

30 5. Implementation

Alice IMS JAIN SLEE Bob

Subscription
sip:bob@ims \,” 1 ‘\’

p— p— i 2 [Jp— pu—

MESSAGE to Notifcation:
S;\‘b MESSAGE t ion:
p:bob \()» S
@ims Slp:bob@jms Wb\MCﬂng;r—»
. Ims
OK
200 OK 4—% Notification
«— | €—oponse |

Get SMS for
Subscription-1D '3
SMS Jist ’

]

Delete

la«———- D |
Message-1D

Deleted

 ——

Figure 5.3 Bob subscribes for the address sip:bob@ims.test. Afterwards Alice
sends a new SMS to this address towards the IMS which forwards it
to the application server. The service looks up machting subscriptions.
As Bob has subscribed to the address, Alice gets a success message.
Defined by the subscription, Bob gets a notification and confirms it.
Then Bob requests all new messages. Afterwards Bob deletes the new
one.

Receive. To receive SMS, it is mandatory to set up a message notification sub-
scribtion first (see 1 at figure 5.3). Without any subscription, the service will not
store any messages. On each incoming message, our service checks against the sub-
scriptions if it has to store the message. These stored messages can then be queried
within the receive interface (see 3 at figure 5.3).

Messages are deleted with their corresponding subscription- and message-id (see 4
at figure 5.3); Note: Against the Parlay X specification, OneAPI no longer defines
automatic deletion of messages after having received them.

5.2 OneAPI Library and Events

The different services provide several function calls. These are modeled as events
inside the SLEE in a request-response manner. These events are represented by
objects. The parameters or return values are described as member variables. The
required parameters are defined in their constructors, the optional ones can be ad-
justed via seperate set-methods.

Many events have some data objects like NotificationFormat or CallbackRefer-
ence in common. These do not need to be declared as events as they are just used
as data objects inside of the events.

The existing restructured Parlay X library has proven of value. It presents a good
structure with one package per service and sub-packages for the different interfaces

5.3. Gateway 31

(as defined in the Parlay X specification). But not all OneAPI function calls can
directly be mapped on related Parlay X methods.

One example where Parlax X is different to OneAPI is the Parlay X method GetRe-
ceivedSms against OneAPI GetInboundSms at the Short Messaging Service. Both
enable the user to retrieve received messages to a certain subscription, but the Par-
lay X specification requires to delete the received messages after having retrieved
it, whereas at OneAPI one needs to delete these messages explicitly. Note: There
are some more differences i.e. at the Payment service, where OneAPI uses more
information than ParlayX in general. Another fact is, that OneAPI drops some of
the methods, that Parlay X provides (i.e. enabling the user to schedule SMS).
Because of these shortcomings, we decided to create a complete new library match-
ing the OneAPI specification. The structure is mostly taken from the old Parlay X
library, but it is fitted to OneAPI.

To keep it more general, we in fact introduce two libraries, one representing the
actual method calls and common data objects of the different OneAPI methods
and another providing interfaces to these to be used as events inside the SLEE. An
example is shown at Figure 5.4, here we see the GetInboundSms event which is an
actual implementation of the interface of this OneAPI method call.

This also corresponds to our need to transform the data with JAXB and the JSON
library. Because of the restrictions of the application server, these frameworks cannot
make use of event objects directly.

«interface» events.sms.receive.GetinboundSms data.sms.receive.GetinboundSms
+ getRetrievalOrder() : RetrievalOrder <]— — — - registrationld : String
+ getMaxBatchSize() : Integer - retrievalOrder : RetrievalOrder
+ setRetrievalOrder(order : RetrievalOrder) : void - maxBatchSize : Integer
+ setMaxBatchSize(size : Integer) : void
«constuctor» + GetlnboundSms(registrationld : String)

Figure 5.4 The SLEE uses interfaces as event types. The actual event object is
an implementation of these.

5.3 Gateway

The main task to build the REST interface is to translate the internal specific service
events to REST messages and the other way round, to give the REST messages a
semantic. This is done by a gateway. It has two different directions. On the one
hand, it listens for new requests coming from the services destined to be send to
an external user (e.g. an SMS delivery notification) and plays back the response to
the service. On the other hand, it listens for new incoming REST requests from an
external user which is the most usual case and returns the answer. These requests
have to be translated into specific service request events to fire them into the system.

32 5. Implementation

A REST request is an actual HT'TP request. The method of the HTTP header
defines the action. The HTTP request URI together with the requested hostname
defines the resource in a natural way. This is for example for a certain inbound
message at the SMS service http://example.com/1/smsmessaging/inbound/
registrations/{registrationId}/messages/{messageld}. Typically the POST
and PUT methods need to provide more information. This is done by encoding this
additional information as XML or JSON into the message body. For convenience we
provide such an event with an encapsulated HTTP request.

A REST response is modeled as a seperate event as well. Such a response is
encapsulating an HT'TP response like at request. Responses give information if the
requested action failed or succeeded. For this purpose, there are typical HTTP
status codes used.

The succeeding responses OK and Created typically carry back the requested content
in their message body. This can include additional information. OneAPI Exceptions
like ServiceException or PolicyException get the statuscode 400 Bad Request
with detailed failure information.

5.3.1 Formats

The OneAPI REST interface requires to support at least two different types of
payload data formats. These are XML and JSON.

<?7xml version="1.0" encoding=" {"Animals": {
UTF-8" 7> "a": null,
<Animals> "cat": {"name": "Matilda"},
<dog> "dog": [
<name attr="1234">Rufus< { "breed": "labrador",
/name > "name": { "$t": "Rufus",
<breed>labrador</breed> "attr": "1234"}
</dog> },
<dog> { "breed": "whippet",
<name>Marty</name> "a": null,
<breed>whippet</breed> "name": "Marty"
</dog> },
<dog/> null
<cat name="Matilda"/>]
<a/> }
</Animals> }

Figure 5.5 An example XML file (left column) and the same revisited in JSON
data format (right column).

5.3.1.1 XML

The Extensible Markup Language defined by the W3C [4] is nowadays a well known
common standard markup language for exchanging data. The structure is easy to
understand and quite simple. An XML document starts with a declaration providing

5.3. Gateway 33

some information about the document itself. Typically such a document consists of
different (nested) elements consisting each of a start and end delimiter (tag) in a
tree-like structure. Each element can additionally have attributes and a body with
some content (including more elements).

A short example document is found at Figure 5.5.

5.3.1.2 JSON

The TETF has published RFC 4627 [17] to the lightweight data exchange format
JSON which is a subset of the Javascript language defined by the ECMA [17]. A
JSON document consists of a number of key:value pairs (objects) or lists (arrays)
of values. A value is either a string, float-number, object, array or a constant (true,
false or null). JSON documents in general are ordered alphebetically by their key.
The endcoding of JSON content is supposed to be Unicode.

One benefit of this format compared to XML is the less overhead. To make the
idea clear, the revisited XML example is shown in the JSON format at Figure 5.5.
Note: There are 204 characters for XML against 164 characters for JSON (without
unneccessary whitespaces).

5.3.2 Message Translation

The gateway contains a seperate unit to translate REST messages into specific events
and the other way round.

At translation we have to distinguish between different cases. These are incoming
REST requests from an external user with the corresponding response and outgoing
requests from a service towards an end user with its response.

For incoming requests we have to determine the specific event type out of the
HTTP header information and the message body. This is primarily done via the
request’s HT'TP method and URI. If this is not sufficient, we have to look at the
payload as well. In most cases, the combination of URI and method uniquely iden-
tifies the type. To build such a specific request in this case, all required information
is gathered by tokenizing the URI and converting the message body (if it has one)
into a java object.

Responses to these incoming requests can be translated into a REST request with
ease. The specific event by itself defines what HTTP response code to use. Re-
sponses typically contain a Location header field to give information about the
requested resource back to the end user. This must be build up carefully out of the
information of the specific response event. Moreover a response normally contains
a representation of the requested resource as well, i.e. the request’s message body.
Our design of the OneAPI library defines that the originating request is encapsu-
lated in the specific response. With this information, the original message body can
be translated according to the specified Accept-Type header field of the previous
request.

34 5. Implementation

Outgoing requets can be translated into a REST request in the same way as the
responses to incoming requests. The method and URI are defined by the specific
request. The format and destination of this request is determined by the address
which is supposed to be given by the service. The SLEE enables to set this address
for each event. According to this information, the message body will be encoded
properly as requested.

With responses to these outgoing request, we have to face the problem, that some
REST responses do not provide enough information to distinguish between different
specific events. These are for example 204 No-Content responses. To set up the
correct answer, we have to store the context, i.e. the corresponding originating
request. With the knowledge about the previous request, we are able to give the
right specific response.

The actual payload can be encoded in the two mentioned formats. For transforma-
tion the following methods are used.

XML. The translation from and to XML is done via the Java Architecture for XML
Binding (JAXB). JAXB allows to give annotations directy in a Java class defining
information about its corresponding XML representation. With this framework Java
objects can be marshaled into XML and XML content unmarshaled into a java object
with ease. One has to create a new single context giving information which classes
are processed. Afterwards marshallers and unmarshallers can be derived from this
context. For each process one un-/marshaller has to be instantiated as they cannot
be used at the same time by more than one thread.

Compared to other methods (e.g. Simple API for XML (SAX)) for this translation,
JAXB is more comfortable and faster by the cost of greater memory consumption
(see [13] for more information).

JSON. For the translation between java objects and JSON, we use the JSON-lib
[20]. Tt provides as simple methods as JAXB for translation. One shortcoming is,
that JSON-lib does not allow to define the information via annotations but uses the
member-variables and their names of a java class directly. This restrcition does not
matter in our case as we have defined our OneAPI library as that.

To translate from a Java object to JSON, one has just to call a static serializa-
tion method. The other way round needs some more infomation, namely a config
providing information which class to deserialize.

5.3.3 Outgoing Requests

A brief overview of the behaviour at outgoing requests can be found at figure 5.6.
Outgoing requests are triggered by the internal services. The gateway handles service
specific OneAPIRequest events. These events are declared as initial at the SLEE,
such that each occurence triggers a new SBB entity to handle it. The SBB contains
a method onOneAPIRequest for each of these specific request events which delegates
this event directly to a sendRestRequest procedure.

This procedure is responsible for several steps:

1. Attach to the activity on which the new OneAPIRequest event arrived and
store the context in order to receive all further events on this process.

5.3. Gateway 35

2. Store the originating event to determine what kind of specific answer to give
later on. This has to be done, because many REST responses just contain a
204 No-Content response code which will be ambiguous otherwise.

3. Create a new RestRequest by using the content translator. Important here is,
that both, the target address and format are defined by the event’s context.
The SLEE provides a method for defining a target address for each fired event
and the service is supposed to give this information. The content transla-
tor takes these arguments and encodes the message body accordingly. Thus,
the destination is defined by the REST request respectively the encapsulated
HTTP request itself. This means the resource adaptor does not need any
further information except the actual REST request.

4. Invoke sending the request by the resource adaptor. This will return a new
OutgoingRestActivity on which we have to attach and which is stored as well
to keep track of all collaborating activities (one to the service and one to the
external user).

| REST-RA |
A RestResponseEvent
REST Adaptor v
| sendRestRequest | <—>| onRestResponse |
A
RestRequest Content OneAPIResponse
translator 4
| onOneAPIRequest |<—> | fireOneAPIResponse |
A
OneAPIRequestEvent \ 4
| Services |

Figure 5.6 A service triggers an outgoing request by firing a specific OneAPIRe-
quest event. The gateway translates this to REST and invokes the
sending at the resource adaptor which will then deliver it to the end
user. The answer will be received by a new RestResponse event thrown
by the RA after having received the message from the end user. This
is translated into a specific OneA PIResponse event and fired back into
the system.

Now the gateway has stored the activity towards the internal service and another
to the external user as well as the originating event. It is awaiting a reply by
the end user. As soon as this is received by the resource adaptor, the RA fires a
new RestResponse event on the corresponding activity. This invokes the handler-
method onRestResponse of the gateway which is responsible for translating this
response into the appropriate specific answer and giving it back into the system.
If the RestResponse is such a mentioned No-Content answer, the handler looks up
the stored prior event and generates the correct specific response. Otherwise it lets
the content translator generate the specific response. Determined by the type of
the event, the adaptor then fires the OneAPIResponse on the activity towards the
service. Having done these steps, it detaches from all activities.

Note: The outgoing activity started by the RA will be terminated automatically by

36 5. Implementation

the SLEE invoking a termination method of the RA, since there are no more entities
interested in it.

5.3.4 Incoming Requests

Incoming requets are triggered by an external user. A brief overview of this procedure
can be found at figure 5.7. As soon as the reource adaptor gets a new connection and
receives a new request, it throws a new RestRequest event. This type is defined as
initial at the SLEE and a new instance of the gateway will receive the event and the
method onRestRequest is invoked. This request can be handled a bit easier. Here is
no need to save the originating event since their type is unique - it is more important
to determine this type. That task is done by the content translator. Now the adaptor
looks up what firing method to use by the type of the specific OneAPIRequest and
invokes it on the same activity on which the RestRequest event came in.

After attaching to this activity it now waits for the corresponding OneA PIResponse
event from the responsible service. With the arrival of this specific answer, the handle
method for this delegates the event to the sendRestResponse procedure which again
uses the content translator to transform this into a RestResponse. Finally it demands
the resource adaptor to send the response back to the end user. After that it detaches
from the activity since there is no further job to be done.

| REST-RA |
RestRequestEvent A
v REST Adaptor
| onRestRequest |<—> | sendRestResponse |
A
OneAPIRequest Content RestResponse
translator
| fireOneAPIRequest | 1—)' onOneAPIResponse |
A
v OneAPIResponse
| Services |

Figure 5.7 After receiving a new RestRequest, the resource adaptor throws this as a
new event into the system. The gateway translates this into a specific
OneAPIRequest event and gives it into the system. The responsible
service gives back a specific OneA PIResponse event which is translated
into a RestResponse. This response is then sent by the RA back to the
end user.

5.4. REST Resource Adaptor 37

5.4 REST Resource Adaptor

The REST Resource Adaptor is the main interface between the external network
and the inside of the application server. It can be split into four packages. A
library containing a generic representation of HT'TP messages; Event definitions for
the REST messages: RestRequest and RestResponse each encapsulating a HTTP
request or response; The interfaces of the RA; and the actual implementation.

Besides a model of HTTP requests and responses with a factory class, the library
also contains a lightweight message parser.

The events provide convenience methods for getting important information of the un-
derlying HTTP message. At requests, this information are the method and request-
URI; at responses, these are the status code and the corresponding reason phrase.
(The actual implementation is left to the package of the RA implementation, since
this is the only instance that is supposed to be able to generate these events.)

The adaptor starts up a new threadpool enabling it to listen for new incoming TCP
connections. As soon as an external user starts a new socket connection, a listening
thread is attached to it. The HTTP parser is then used to set up the new HTTP
request. Now an IncomingRestActivity is started and a the new RestRequest
is fired on this activity for being further processed by the systeme, i.e. the gate-
way. The connection is held open until the sendResponse method provided by the
activity is invoked and the answer is sent.

A provider interface enables any service of the system to send new requests to an
external user. An QutgoingRestActivity is created each time a new request from
inside of the SLEE is triggered.

To check wehter we have a reasonable REST message is left up to our gateway that
translates these into specific events.

38

5. Implementation

Evaluation

To show different performance aspects of our interface implementation on the SLEE
platform, we have run several tests. The results are expected to show a general
overview how the system behaves at different loads.

There are three scenarios covered by the tests. They are chosen to evaluate different
parts of our implementation. These are the complete send SMS process triggered by a
third party (this means send SMS invocation, delivering towards the IMS and giving
the appropriate response) to get an impression of the performance under normale
usage including the communication with the IMS; only the send SMS invocation
with its corresponding response, but without actual delivering, to evaluate just the
interface; and the notification subscription process as this is another common use-
case where the IMS is not involved.

6.1 Tools

OneAPI traffic generator. In order to represent a third party that invokes the
different services, we introduce a simple traffic generator, that creates unique re-
quests and sends them at a predefined rate (requests per second) towards the SLEE
for a specified time. It then awaits the responses. At each sent request, it measures
the time until the response is received.

A core instance invokes periodically new client threads within a predefined time
period. Such a client manages a OneAPI request invocation, i.e. sending a request
and receiving the answer. The core uses the ThreadPoolExecutor Java class to
manage the client threads for gaining better performance. This threadpool is bound
to 300 core threads which should normally be enough. The client thread saves a
timestamp at invocation time. When it is run by the executor, it first checks wether
a timeout of 60 seconds has already been exceeded. If there is time left, it opens a
new socket to send a request and afterwards awaiting the answer. The socket here
gets a timeout such that it will shut the socket down exactly 60 seconds after the

40 6. Evaluation

stored invocation time. The value of 60 seconds is chosen as a tradeoff between a
possibly too low level and unacceptable response times at most telecommunication
services.

The current time before sending a request as well as the time of the answer are
traced. This enables computing the round trip time (RTT) of this specific OneAPI
method call which is given back to the core.

Generally if a response does not arrive within 60 seconds or even does not get send
within this time, the request will be dircarded and is considered to be lost. This
information is given to the core as well.

At runtime all results of the client threads will be stored in a simple array. After
terminating the whole test, the resulting list will be stored encoded in XML.

Receive SMS. For receiving SMS from the invoked send SMS method, we use a
simple STP softphone called Twinkle [6], that is capabale to register at the IMS and
to receive and send messages via SIP.

6.2 Setup

For performance evaluation of our REST interfcae, there has been set up a testbed
environment at the Chair of Communication and Distributed Systems of RWTH
Aachen University. An overview can be found at figure 6.1.

Ethernet (100Mbit/s)
|]]
IMS SLEE Client
10.0.0.1/29 10.0.0.2/29 10.0.0.3/29
- OpenlMSCore - JAIN SLEE AS - Traffic Generator
- Bind DNS Server - Twinkle

Figure 6.1 The performance evalutation testbed environment. It consists of an
IMS server also being responsible for DNS, a SLEE Application Server
and a client for generating and receiving traffic.

The test environment consists of two Personal Computers (PCs) each running Ubuntu
Maverick (10.10) Server Edition Linux operating system at kernel 2.6.34 and a note-
book running Ubuntu Lucid Lynx (10.04) Desktop Edition at kernel 2.6.32. The PCs
both have Intel Core 2 Duo 2.4 GHz processors and 2 GB of RAM. The notebook
has an Intel Core 2 Duo at 1.8 GHz with 4 GB of RAM. They are connected via a
100Mbit /s network switch.

One of the PCs (IMS) is used for the the HSS and CSCF's of the IMS core. The run-
ning implementation is the open source OpenIMSCore published by the Fraunhofer
FOKUS institute [2]. In addition to the IMS part, it is also responsible for a local
Domain Name System (DNS) server which serves the domain open-ims.test. The
second PC (SLEE) acts as the SLEE AS. We use the open source Mobicents JAIN
SLEE platform [21] at version 2.3.0 which is based on a JBOSS AS [19] at version
5.1.0. The used Java implementation is the OpenJDK [22] at version 6 providing a
Java Runtime Environment at version 1.6.0.

The notebook (Client) is in charge of traffic generation with our tool and running
the softphone for receiving messages.

6.3. Results 41

6.3 Results

At first initial tests, we found out that the SLEE is varying the processing times at
very short testings periods. There seems to be an initial transient phase, thus all
tests have been running for 10 minutes. A clean new system without any influences
of previous tests was guaranteed by rebooting the whole system each time. To have a
good comparable basis for the different testruns, each test scenario has been running
5 times. All presented results here are averages over these 5 testruns. Generally we
observe, that the testruns for a certain scenario reveal very similar results.

The console tracer-level has been set to FRROR, since we are not interested in any
information supposed for debugging as this would probably have a negative impact
on the whole system performance.

Having build the traffic generator in Java turned out as a poor idea, at least in the
way we did. A big problem is the time resolution. With Java, there is no easy way
to get an accurate precision beyond milliseconds. There exists the possibility to use
nanoseconds, but seperate tests have shown, that this is not useful at all.

The resolution of milliseconds is no problem while dealing with less than 100 incov-
ations per second as it is the case at SMS delivery. However, the resolution becomes
a serious problem at an increasing number of invocations per second beyond this
treshold. As a matter of fact, we in particular were not able to set the rate very
accurate before the test. Nevertheless, it can be calculated afterwards. It might be
possible to get generate other rates by changing the test execution time, but we did
not evaluate on this idea any further, since it changes the test conditions.

Another problem occurrs at heavy load. We have noticed that the SLEE gets socket
errors mostly at nearly the end of a testrun. These failures result automatically in
losses in our statistics as a new socket connection might get refused.

We assume that more excatly these exceptions rise when the client closes connections
because of an exceeded timeout. The error becomes visible at the RA when it tries
to open a new server socket. This fails with an exception triggered by the OS saying
that there are too many files opened.

Further analyzing has shown, that many sockets stay in the CLOSE_WAIT state
which means, that the socket has been closed, but there is still an acknowledgement
missing or any thread is still referencing to this socket. The connection stays in this
state as long as the application is running. As a matter of this, these sockets remain
blocked and the maximum number of sockets exceeds at some point.

In general, this problem often occurs at server applications opening and closing many
sockets very quickly like it is the fact here. The most common reason is simply a
fault in the application. Thus, we assume that in some cases, a socket is not properly
closed by the resource adaptor. As this failure only occurs at heavy load where the
client gets timeouts.

An attempt to get the sockets cleanly closed, is to set a client socket to remain in
the TIME_WAIT state for a short time period after closing. Another try was to
set a lower socket timout at the server. Furthermore, as a possible workaround, we
tried to adjust the systems socket limit which is under linux typically set to 1024
(ulimit -n). Neither changed anything and this serious bug has not been resolved
while working on this thesis.

42 6. Evaluation

Either way, we proceded testing our implementation, since we only have to face the
mentioned problem at very heavy load.
Remember: This failure is automatically counted as a loss.

6.3.1 Sending SMS

There necessity to test at least the whole vertical communication through the system.
This goal is achieved by invoking a request to send an SMS. This use case is quite
simple. It includes a third party, that sends the actual request; the OneAPI interface
translating the request into a specific event to be received by the SMS service. This
service sends back a response and handles the SIP message delivery towards the IMS
keeping track of the delivery status.

This setup does not scope the delivering time towards the client which receives the
messages from the IMS.

& average response time --successrate

100000 100

10000 80
B -
o 1000 60 =
£ e
o ®
2 100 40 3
8 o
> >
4 @)
2 10 20

1 0

5 15 25 35 45 55 65 75 85
Jobs per second

Figure 6.2 Result of send SMS and delivery. This diagram shows the result of
the different testruns at a certain rate of requests per second. The left
y-axis denotes the average response time of the system in milliseconds,
the right y-axis denotes the success rate of the requests in percent.
The system can considered as stable at loads up to 40 invocations per
second.

A first impression of the test results for sending an SMS can be found at figure 6.2.
The system shows a quite stable behavior up to 39 requests per second keeping the
response time below 50ms. It is still capable to deal with 44 requests per second,
but the response time increases massively to slightly below 2 seconds.

We can observe first losses at a threshold of 49 requests per second where at the
same time, the response time raises to over 8 seconds. Increasing the load leads to a
slightly increasing response time, whereas the absolute number of successful requests
decreases. Even at a high load of 75 requests per second, the system still reacts to
our requests in an acceptable time of about 11 seconds, or at 88 jobs per second in
a time below 20 seconds which is still fairly acceptable for sending an SMS as it is
no time critical service.

6.3. Results 43

Load Avg. Q3 Stddev. Success Abs. succ.
34 28 ms 10 ms 154 100.00 % 20,449
39 42 ms 14 ms 213 100.00 % 23,699
44 1,742 ms 115 ms 4,507 100.00 % 26,902
49 8,174 ms 9,402 ms 14,678 96.13 % 28,435
54 9,387 ms 13,602 ms 15,212 82.69 % 27,012
57 6,786 ms 12,890 ms 12,806 75.71 % 26,261
75 11,292 ms 16,581 ms 14,808 48.44 % 21,836
88 19,274 ms 30,234 ms 18,988 34.77 % 18,435

Table 6.1 Detailed results of the send SMS and delivery tests. At higher loads,
the response time gets higher and much requests get lost.

Another interesting fact is, that the upper quartile (Qs) of the response time at load
44 remains at about 115ms which is far from the average. So, at some point, the
system obviously cannot handle all requests in time and they are getting queued.
Either the system serves such a queued request or the client terminates it after its
60 second timeout. This corresponds to the fact that the response time increases
heavily at loads over 50 and, simultaneaously, the number of lost requests increases.

Note: All messages are stored in a Profile Table which is cleared before each testrun.
Messages exceeding a predefined age are deleted by periodic maintenance of the short
messaging service, but as the number of messages increases, the lookup for a certain
message becomes more costly which has to be done when updating the delivery
status. This might slow down the service at running for longer times. The periodic
maintenancing as such needs cpu time as well while running.

6.3.2 SMS invocation

After testing the whole SMS sending process, we are now interested only in the
invocation of sending an SMS. This test is meant to get an impression of the system’s
behavior when we just stress the actual REST interface instead of giving it additional
responsibility of sending the SMS.

For this purpose, the SBB providing the service has been modified to receive a
request, store it internally and give the related response as usual, but not to start
a new activity for the actual sending of a SIP message towards the IMS. Thus, the
service’s business is solely to store a message and give a response back.

An overview of the average response times of the SLEE for a certain number of
invocations per second is depicted at figure 6.3.

We observe, that the system manages up to 158 requests per second without a promi-
nent increse of the average response time or any losses. This behavior changes at a
load of 189 requests per second. Here the response time raises to over 4 seconds and
very few requests get a timeout. Taking a closer look on the upper quartile reveals,
that most messages are processed in below 16ms. We have seen this case at the first
test where the SMS have been delivered as well, as the upper quartile shows a very
low value against the average. This means most messages are successfully processed,
but some get queued and it takes relatively long before these get processed.

44 6. Evaluation

& average response time ---successrate

10000 100
— 1000 80
0 —
n 60 3
£ 100 ©
3 w &
S 8
2 10 @
& 20
1 0
5 55 105 155 205 255 305

Jobs per second
Figure 6.3 Test results of the send SMS invocation tests. This diagram shows the
result of the different testruns at a certain rate of requests per second.
The left y-axis denotes the average response time of the system in
milliseconds, the right y-axis denotes the success rate of the requests
in percent. The system remains stable at managing up to 155 requests
per second. At further increasing of the load, more requests get lost,
but the response time for the successful requests just increases slowly.

Load Avg. Q)3 Stddev. Success Abs. succ.
107 22 ms 6 ms 155 100.00 % 64,490
158 191 ms 5 ms 834 100.00 % 95,083

189 4,115 ms 16 ms 11,407 99.66 % 113,043
209 3,966 ms 771 ms 10,650 87.71 % 110,367
230 3,953 ms 174 ms 10,753 79.01 % 109,291
304 5,262 ms 7,147 ms 10,733 58.49 % 106,831
Table 6.2 Detailed results of the send SMS invocation tests when the system be-
comes unstable. As the average processing time and standard deviation

do not change intensely, the system only handles a roughly fixed number
of requests.

6.3. Results 45

Higher loads at over 209 requests per second result in nearly the same amount of
about 11,000 successfully processed messages. The average that time as well as
the standard deviation do not change considerable. The upper quartiles show, that
most of these successing messages have response times below 1 second. This value
increases significantly to over 7 seconds at a load of 304 which acceptable for sending
an SMS.

The oberservations seem to proof our assumption about the networking part of
the implementation. Whenever we do not recognize any losses or in other words
timeouts, the system reacts and answers very fast; there are response times below
200ms on average as well as an upper quartile of 5ms at load 158. The average
processing time heavily increases as soon as there emerge losses, but note that the
upper quartile remains relatively low (load 209).

We know, that some sockets (for whatever reason) are not closed properly and stay
in the blocked CLOSE_WAIT state. This leads to a smaller amount of possible open
sockets on the whole OS. Regardless of this, the RA accepts new socket connections
as long as possible which again may lead to more blocked sockets. We suppose, that
as a matter of this, there are no more or few additional connections possible at some
point. Thus, further requests get rejected and are counted as a loss.

We have randomly examined the number of such blocked sockets while running such
a critical test. The amount of sockets remaining in the CLOSE_WAIT state is very
high (e.g. 500, 900) which also proofs our assumption.

Apart from this, the actual interface seems to be quite efficient which can be observed
at the cases (up to nearly 189 requests per second) where no losses occur.

6.3.3 Notification subscription

Another typical use case will be the subscription for certain SMS. This use case is
very similar to the send SMS invocation, but is slightly more involved. Triggered by
an imcoming request, the service checks the Profile Table that holds all subscriptions
against the specified criteria as they are not allowed to overlap. If no overlapping
is found, it stores the subscription. Afterwards it gives an appropriate response
(success or failure).

A first impression of the test restult gives the diagram at figure 6.4. The system
is able to manage loads up to 69 requests per second where it keeps the average
response time below 22ms. It can be considered as stable at higher loads up so 88
requests per second as there are no losses, but the response time increaes to nearly
5s. This value is still very acceptable for subscribtions to receive certain SMS as
they are usually set up for longer terms.

Heavier loads result in a higher number of lost requests. As this test is very similar
to the send SMS invocation test, it can be observed that it reveals the same behavior.
The only difference shows up at the threshold where the system becomes unstable.
A detailed view on the measurement results gives table 6.3.

An answer to the lower threshold is, that the responsibilities at a subscription request
are more involved. Especially in comparison to the invocation test where the service
is solely responsible to give a response, this service has to check for overlapping
subscriptions in the Profile Table before returning a response which takes longer.

46 6. Evaluation

The fact that higher loads roughly only causes the number of lost requests to grow,
has already been discussed at the send SMS invocation test.

Again, we observe fast reaction times in the cases where we do not recognize any
losses up to 69 requests per second. This does not directly proof that the inferface
is quite fast as the load is much lower here compared to the invocation test, but it
also does not contradict.

- gverage response time --successrate

100000 @ * * * 100

10000 —i— 30
B —
o 1000 60 =
£ g
© %
@ 100 40 8
I 3
Q 5
@ a
@ 10 20

1 0

5 25 45 65 8 105 125 145 165 185
Jobs per second
Figure 6.4 Test results of the subscription test. This diagram shows the result of
the different testruns at a certain rate of requests per second. The left
y-axis denotes the average response time of the system in milliseconds,
the right y-axis denotes the success rate of the requests in percent.
The system manages up to 85 requests per second without any losses.
At higher loads, more requests get lost, but the response time for the
successful request remains stable

Load Avg. Qs Stddev. Success Abs. succ.
29 12 ms 12 ms 28.02 100.00 % 17,966
69 22 ms 13 ms 124.23 100.00 % 41,882
88 4,861 ms 2,830 ms 10,070,80 100.00 % 53,066
107 8,500 ms 10,246 ms 15,030.53 74.49 % 47,935
120 8,768 ms 11,397 ms 15,202.18 62.83 % 45,255
158 10,648 ms 15,153 ms 16,950.58 40.02 % 34,260

Table 6.3 Detailed results of the subscription tests when the system becomes un-
stable. The system is able to hanlde up to 88 requests per second with-
out losses whereas the response time remains low. As already seen at
the send SMS invocation test, the standard deviation and response time
remain on the same level, but more requests get lost.

Conclusion

We have introduced information and latest development about telecommunication
services and networks. The proccess of merging these networks together to all-IP-
based communication via the IMS architecture is a convenient way to administrate
users even of external IMS networks. The design with the control layer has already
proofed its benefits at GSM.

The architecture also allows to integrate application servers with ease. They enable a
provider to apply several new services built ontop of the actual network. This shows
up another benefit of the IP-based network, since the single language for signaling
is SIP. SIP is a well known protocol and an accpeted standard for these purposes.

To combine telecommunication services and the web, we have introduced Web Ser-
vices in general as well as Web Services in a RESTful design, namely RESTful Web
Services. The most important standards have been presented which are Parlay X
and OneAPI. Parlay X is deprecated and OneAPI is being in further development
and the newest standard for telecommunication services. It is defines some elemental
telecommunication services as a RESTful Web Services.

The current OneAPI version 2.0 only provides the services SMS, MMS, Location,
Payment, Voice Call Control, Data Connection Profile and Device Capability, but
version 3.0 will extend this palette.

For integrating OneAPI into the IMS, we use a JAIN SLEE application server. This
event driven platform is meant to be used at telecommunication applications, since
it claims to be able to handle many events in parallel very fast.

The SLEE platform provides a model to create single small application blocks (SBBs)
that can be plugged togehter into a complete service. It also affords the possibility
to integrate custom external resources via Resource Adaptors.

Our OneAPI REST interface has been built for such a SLEE AS. This includes a
new Resource Adaptor for managing REST requests and responses which are in fact
HTTP requests or responses, respectively. This RA acts as an interface between the
external world and the inside of the SLEE.

Function calls and their return value are represented as events in the SLEE. To

48 7. Conclusion

distinguish between different OneAPI function calls, we do not use a generic OneAPI-
request and response, but have created a whole library containing for each method
of each service a request and a response class.

Thus, generic REST messages from and towards the RA have to be translated into
these specific events. This task is done by the gateway module which handles the
whole translation.

To show the complete communication from an end user to the IMS, we have also
implemented the Short Messaging Service. This service uses a SIP-RA to communi-
cate with the IMS. For cummunicating with an external user through the gateway
and via the REST interface, it just has to receive and fire the OneAPI specific events
for the SMS service.

The performance evaluation has revealed some serious problems. On the one hand,
the approach of our traffic generator does not seem to be the best idea because
of problems with the time resolution beyond milliseconds. This resulted in some
shortcomings of our testruns as we were not able to set all desired request rates.
Nevertheless, it worked and the results are still very useful.

On the other hand a problem with Resource Adaptor’s networking part could not be
resolved while this thesis duration. As soon as requests get lost because the traffic
generator does not get an answer before a timeout, the client closes the corresponding
socket. We observed that at some point the server seem to not recognize the closed
connection correctly and the server socket remains in a blocked state as long as the
application (i.e. the SLEE itself) is running. This leads to reaching the operating
system’s maximum number of sockets where most of the used slots are blocked.
Thus, the server is not able to open new connections anymore and subsequent request
attempts by a client may get refused.

Setting a lower socket timeout at the RA or increasing the maximum number of
filepointers on the OS did not help to eleminate this problem. Another approach
setting the client to stay a short period in a wait state when a socket is closed, did
not help either. This issue is still unsolved and will need further investigation.

The evaluation results especially for the send SMS invocation seem to proof our as-
sumption on this problem. The performance of the interface turns out as being quite
good with low response times as long as the server does not produce these blocked
sockets. The current bottleneck is definitily located at the mentioned problem.

We further assume, that the server will be capable of handling higher loads when
this bug is resolved. This assumption is made due to the fact, that at both, the invo-
cation and subscription test, the absolute number of successful requests remains on
the same level at some point. The same applies for the response time and standard
deviation which are still very acceptable for the tested service parts.

49

Future Work. First of all, the mentioned socket bug has to be resolved and as
a consequence, maybe the networking part of the RA has to be totally redesigned.
After getting rid of this problem, the performance tests should be rerun. Here we
will have to face the time resolution problem of our traffic generator. It has to be
reconsidered as the number of possible successful requests will probably increase
without the socket bug. There will be the need to set different request rates per
second in a precise way to determine thresholds of the system behavior more exactly.

Our RA has some more shortcomings. The HTTP implementation is very simple,
which means e.g. chunking or keepalive connections are not supported right now.
The RA also does not implement HTTPS which may be desired for security reasons.
Security and authentication in general should be considered in the future, since we
ignored these aspects till now.

We have introduced an implementation of the Short Messaging Service. Currently
this service is packed completely into one single SBB as earlier work on the SLEE
platform ([9], [15]) pretend that splitting responsibilities results in massive internal
communication overhead by creating new NullActivities. We currently use such
NullAcitvities at the SMS service and results show that they do not seem to slow
down the system in a very considerable way. There should be spent some time on
this open question.

Depending on the answer to this question, the implementation possibly should be
splitted up into several reusable blocks as the SLEE proposes such a design.

The whole interface becomes more interesting having more services implemented.
Building new services will gradually become easier with an increasing number of
such logical applicaton blocks. A higher number of miscellaneous key-services will
lead to the ability to create far more sophisticated service compositions.

50

7. Conclusion

Bibliography

1]

[10]

[11]

[12]

[13]

Parlay X Web Services (ETSI Standard 202 504), May 2008.
Open IMS Core project website, March 2011. http://www.openimscore.org/.

The seekda! Web Service search engine, March 2011.
http://webservices.seekda.com.

Bray, T., Paori, J., SPERBERG-MCQUEEN, C. M., MALER, E.,
YERGEAU, F., AND COwWAN, J. Extensible Markup Language (XML) 1.1,
2nd ed. World Wide Web Consotium, http://www.w3.org, August 2006.
http://www.w3.org/TR/2006/REC-xm111-20060816/, March 2010.

CARLIN, J. M. E. Context-Aware Service Provisioning in Converging Net-
works, 1st ed. Shaker Verlag GmbH, November 2010.

DE BOER, M. The Twinkle SIP softphone project website, March 2011.
http://www.twinklephone.com.

ERICSSON. Introduction to IMS, 2007. White Paper.

FieLpiNng, R. T., AND TAYLOR, R. N. Principled Design of the Modern
Web Architecture. ACM Transactions on Internet Technology 2, 2 (May 2002),
115-150.

HERPERTZ, R. A Platform for Exposing Telecommunication Capabilities in
Service-Oriented Environments. Master’s thesis, RWTH Aachen University,
June 2010.

OPEN MOBILE ALLIANCE. OneAPI Profile of ParlayREST Web Services, Au-
gust 2010. v1.0.

OPEN MOBILE ALLIANCE. GSMA-OneAPI project website, March 2011.
http://github.com/0OneAPI/GSMA-OneAPI.

OPEN MOBILE ALLIANCE. RESTful bindings for Parlay X Web Services, Jan-
uary 2011.

Orr, E., AND MEHTA, B. Java Architecture for XML
Binding (JAXB). Oracle Technology — Network — (March — 2003).

http://java.sun.com/developer/technicalArticles/WebServices/jaxb,
March 2010.

52

Bibliography

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

RICHARDSON, L., AND RUBY, S. RESTful Web Services, 1st ed. O’Reilly
Media, Inc., May 2007.

RuciNa, A. A Platform for Event-Based Provisioning of NGN Services. Mas-
ter’s thesis, RWTH Aachen University, March 2010.

SUN MICROSYSTEMS AND OPEN CLOUD. JAIN SLEE (JSLEE) 1.1 Specifica-
tion, final release ed. Sun Microsystems Inc., 4150 Network Circle, Santa Clara,
CA 95054 USA and Open Cloud, 140 Cambridge Science Park, Milton Road,
Cambridge, CB4 0GF United Kingdom, 2008.

THE ECMA WORKING GROUP. FCMAScript Language Specification, bth ed.
Ecma International, Rue de Rhone 114, CH-1205 Geneva, December
2009. http://www.ecma-international.org/publications/files/ecma-
st/ECMA-262.pdf.

THE JACKSON COMMUNITY. Jackson High-performance JSON processor web-
site, March 2011. http://jackson.codehaus.org/.

THE JBoss coMMUNITY. The JBOSS Application Server project website,
March 2011. http://www. jboss.org/jbossas.

THE JSON-LIB cOMMUNITY. The JSON-lib project website, March 2011.
http://json-1ib.sourceforge.net.

THE MOBICENTS COMMUNITY. The Mobicents JAIN SLEE project website,
March 2011. http://www.mobicents.org/slee/intro.html.

THE OPENJDK coMMUNITY. The OpenJDK project website, March 2011.
http://openjdk.java.net/projects/jdk6.

	Contents
	1 Introduction
	1.1 Challenge
	1.2 Outline

	2 Background
	2.1 Telecommunication Services
	2.1.1 Examples
	2.1.2 Service Composition and Third Party Access

	2.2 IP Multimedia Subsystem
	2.3 Web Services
	2.3.1 Representational State Transfer
	2.3.2 RESTful Web Services
	2.3.3 Classic Web Services versus RESTful Web Services

	2.4 Standards
	2.4.1 Parlay/OSA and Parlay X
	2.4.2 OneAPI
	2.4.2.1 Version 1.0
	2.4.2.2 Version 2.0

	2.5 JAIN Service Logic Execution Environment
	2.5.1 Resource Adaptors
	2.5.2 Service Building Blocks and Services
	2.5.3 Events
	2.5.4 Acitivities and Activity Contexts
	2.5.5 Profile Tables and Container Managed Persistance Fields

	2.6 Summary

	3 Related Work
	3.1 Parlay X and SOAP
	3.2 GSMA OneAPI implementation
	3.3 seekda!

	4 Design
	5 Implementation
	5.1 Short Messaging Service
	5.2 OneAPI Library and Events
	5.3 Gateway
	5.3.1 Formats
	5.3.1.1 XML
	5.3.1.2 JSON

	5.3.2 Message Translation
	5.3.3 Outgoing Requests
	5.3.4 Incoming Requests

	5.4 REST Resource Adaptor

	6 Evaluation
	6.1 Tools
	6.2 Setup
	6.3 Results
	6.3.1 Sending SMS
	6.3.2 SMS invocation
	6.3.3 Notification subscription

	7 Conclusion
	Bibliography

