
Attitude Independent Movement
Determination using MEMS for

Screen-less Pedestrian Navigation

Master Thesis

Jens Helge Reelfs

RWTH Aachen University, Germany

Chair for Communication and Distributed Systems

Advisors:

Dipl.-Inform. Jó Ágila Bitsch Link
Prof. Dr.-Ing. Klaus Wehrle

Prof. Dr. Bernhard Rumpe

Registration date: 2012-11-19
Submission date: 2013-03-28

I hereby affirm that I composed this work independently and used no other than the
specified sources and tools and that I marked all quotes as such.

Hiermit versichere ich, dass ich die Arbeit selbstständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich gemacht
habe.

Aachen, den 28. März 2013

Abstract

While indoor navigation systems attract more and more attention, smartphone-
based dead reckoning systems heavily depend on the user holding the device in a
specific way. As soon as a user puts the device in her trouser pocket or jacket, they
fail. In this thesis, we enable smartphones to accurately determine steps and the
current bearing of a user even in these conditions.

We build a general model of the walking motion with specific instances for different
device locations (trousers pocket, jacket pocket). Slicing the measured data within a
step to only extract the segment which provides the most information on the user’s
walking direction, our approach has a median absolute error of only 12◦ (mean: 22◦,
q75: 25◦) on a total of 15 participants completing a total of 49 test runs. Therefore,
together with proposed feedback generation methods, this thesis lies the foundation
of true hands-free indoor navigation without the need for any infrastructure.

Kurzfassung

Während das Gebiet der Gebäudenavigation mehr und mehr an Bedeutung gewinnt,
hängt Smartphone-basierte Schritterkennung in großem Maße von der genauen Lage
des Gerätes ab. Diese Methoden versagen, sobald ein Nutzer sein Gerät in seiner
Hosen- oder Jackentasche trägt. In dieser Arbeit wird ein Ansatz vorgestellt, der es
ermöglichts auch unter solchen Bedingungen Schritte und die aktuelle Richtung des
Nutzers präzise bestimmen zu können.

Ein generelles Modell der Schrittbewegung dient als Basis für verschiedene Erken-
nungsinstanzen bei unterschiedlicher Lage des Gerätes (Hosentasche, Jackentasche).
Indem aus den gemessenen Daten eines Schrittes nur genau das Segment berück-
sichtigt wird, welches die genauesten Informationen zur Bewegungsrichtung eines
Nutzers liefert, zeigt unser Ansatz nur einen durchschnittlichen absoluten Fehler
von 12◦ (Median: 22◦, q75: 25◦) bei 15 Versuchsteilnehmern über insgesamt 49
Testläufe. Zusammen mit vorgeschlagenen Navigationsausgabemechanismen, liefert
diese Arbeit somit die Grundlage einer Gebäudenavigation bei der die Hände frei
bleiben ohne den Rückgriff auf jegliche Infrastruktur.

“You mean this isn’t woodshop class?”
— Emmanuel Goldstein

a.k.a. Cereal Killer

Contents

1 Introduction 1

1.1 Contributions . 2

1.2 Structure of the Thesis . 2

2 Background 5

2.1 Inertial Navigation Systems . 5

2.1.1 Pedestrian Dead Reckoning 6

2.2 MEMS . 6

2.2.1 Gyroscope . 7

2.2.2 Accelerometer . 7

2.2.3 Magnetic Field . 7

2.2.4 Sensor Fusion . 8

2.3 Android . 9

2.4 Navigation Applications . 10

2.5 FootPath . 10

2.5.1 Current Movement Detection 11

2.5.2 Matching Algorithm . 12

2.5.3 Current Map Modeling . 13

2.5.4 User Interface . 14

2.6 Summary . 14

3 Related Work 15

3.1 WiFi-Localization . 15

3.2 Dead Reckoning . 16

3.2.1 Foot-Mounted Devices . 16

3.2.2 Heading Estimation . 16

3.2.2.1 More sophisticated approaches 17

3.2.3 Movement and Step Detection 17

3.2.3.1 Zero-Crossing . 17

3.2.3.2 Peak . 18

3.2.3.3 Gyroscope . 18

3.2.3.4 Autocorrelation . 19

3.2.3.5 Vision-aided . 19

3.2.4 Step Length Estimation . 20

3.2.5 Including Map Data . 21

3.2.6 Further Improvements . 22

3.2.7 Adding WiFi . 22

3.2.8 Results . 23

3.3 Navigation Interfaces . 25

3.3.1 Visual . 25

3.3.2 Audio . 25

3.3.3 Vibration . 26

3.4 Summary . 27

4 Design 29

4.1 Overall Design Considerations - Layered Design 29

4.2 New Model for Step and Direction Detection 29

4.2.1 Functional Requirements Analysis 30

4.2.2 Magnetic Compass . 30

4.2.3 Smartphone Carrying Locations - Survey 31

4.2.4 First Approaches . 33

4.2.4.1 Direct Rotated Linear Accelerations 33

4.2.4.2 Magnetic Field and Accelerations 33

4.2.4.3 Sensor Fused Rotation Vector 33

4.2.5 Final Model Decisions . 34

4.2.5.1 Generalized Model 35

4.2.5.2 Model Design . 35

4.2.6 Method to get Parameters . 37

4.2.6.1 Smoothing . 37

4.2.7 Non-Step updates . 38

4.3 Navigation Interface . 38

4.3.1 Current Interface: Display . 38

4.3.2 Overlay Graph and Interestpoints 38

4.3.2.1 Interest Points . 39

4.3.3 Alternative Interfaces . 42

4.3.3.1 Audio . 42

4.3.3.2 Vibration . 42

4.3.4 Metric Linear Temporal Logic 43

4.3.4.1 From Overlay-Graph-Paths to MLTL-ready Paths . . 44

4.4 Summary . 47

5 Implementation 49

5.1 MATLAB . 49

5.2 From Offline to Online . 50

5.2.1 Time Bounds . 50

5.2.2 Limited Knowledge . 51

5.3 FIR vs. Convolution . 51

5.4 Actiongraph . 52

5.5 MLTL . 52

5.6 Class Overview . 53

5.6.1 Orientation . 53

5.6.1.1 Data Collections . 53

5.6.1.2 Datamanager . 54

5.6.1.3 Sensor Fusion . 54

5.6.1.4 Step Detection . 54

5.6.1.5 Non-Step Updates 55

5.6.2 Navigation . 57

5.7 Insidious Bugs and Unittests . 58

5.7.1 Unittests . 58

5.7.2 Challenging Bugs . 59

6 Evaluation 61

6.1 Device Carrying Location Estimation 61

6.2 Evaluation on Collected Data . 63

6.2.1 Heading Estimation Approchaes 63

6.2.2 Flipping . 64

6.2.3 Smoothing . 64

6.2.3.1 Pre-smoothing . 65

6.2.3.2 Post-smoothing . 65

6.2.4 Model Parameter Determination 66

6.2.5 Offline Approach . 69

6.2.5.1 Jacket Dataset . 69

6.2.5.2 Trousers Dataset . 69

6.2.5.3 Complete Dataset 72

6.2.6 Online Approach . 75

6.2.7 Outliers . 77

6.2.7.1 False Device Location Estimation 77

6.2.7.2 Outliers in Heading Estimation 78

6.2.8 Example Path . 80

6.2.9 Decreased Sampling Rate . 83

6.2.9.1 Model Distinction at Lower Resolution 83

6.2.9.2 Step Detection at Lower Resolution 83

6.2.9.3 Model Evaluation at Lower Resolution 85

6.2.9.4 Model Optimization at Lower Resolution 85

6.3 Requirements fulfilled? . 88

6.4 Heading Estimation - Comparison to Related Work 89

6.5 New Navigation Interfaces . 90

6.6 Summary . 91

7 Future Work 93

7.1 Device Location Determination . 93

7.2 New Models . 94

7.3 Individual Model Fitting and Learning 94

7.4 Better Rules for User-Feedback . 94

7.5 Adapt Step Length on the Fly . 95

7.6 Using Barometer . 95

7.7 Combine Multiple Localization Technologies 95

8 Conclusion 97

Bibliography 99

List of Figures 105

List of Tables 109

List of Abbreviations 111

A Survey Results - Where do you carry your smartphone? 115

B Heading Ambiguity at Magnetic Field and Accelerations 117

B.1 Rotation Matrix . 117

B.2 Heading . 119

C MLTL Examples 121

D Evaluation 123

D.1 Device Location Determination . 123

D.2 Flipping . 124

D.3 Smoothing . 126

D.3.1 Presmoothing . 126

D.3.2 Postsmoothing . 126

D.4 Model Parameter Optimization . 133

D.5 Model Evaluation . 134

D.5.1 Outliers . 137

D.6 Model Evaluation at different Sampling Rates 141

D.7 Comparison of Online and Offline variants 143

D.8 Examplepath Evaluation . 145

D.8.1 Additional Examples: Jacket Pocket & Handheld 145

D.8.2 Additional Statistics for Trousers 150

1
Introduction

Nearly everybody uses car navigation systems in everyday life, whereas we are walk-
ing most of the time - so why do we restrict this application to the car?

Imagine Bob wants to vist his wife Alice at the University Hospital Aachen as she
had a surgery this morning. Due to the complexity of the building, he has no clue
how to find her patient’s room, but the only available information is, that she is
on the intensive care unit IM18 room 4 which is located at corridor 11B. Luckily,
he downloaded the building map before, such that he can use FootPath - an indoor
pedestrian navigation system for smartphones - in order to find Alice as quick as
possible. However, he does not want to stick to his smartphone display as otherwise,
he might disturb other patients on his way through the building. Without any
further local knowledge of the clinic, he finally found his cheerful wife.

Typical navigation application suffers from the non-availability of the Global Po-
sitioning System (GPS) indoors, which leads to the need of estimating the user’s
movement based on internal sensor data of the used device. Because of the desire
to simply put the device anywhere (e.g. trousers or jacket pocket) as usual, the
movement estimation is non-trivial. First of all, the measured sensor data is repre-
sented relative to the device. Furthermore, it may show high variance caused by the
pedestrian walking motion in combination with the device location.

Moreover, all non-handheld locations do not allow the user to look at the screen
which restricts feedback to non-visual media like audio and vibration. In comparison
to passively showing the current user position on a map, the task of giving precise
environment dependent feedback hints is more complex than simple turn-by-turn
left/right instructions.

In this thesis, we present a new technique to determine the current user’s heading
at the trousers and jacket pocket location. Our method bases on a model of typical
human walking which allows to segment the sensor data by single steps. We process
the sensor data from each step-segment and calculate a heading estimation. From
this, we have determined best fitting model parameters by optimization on a set of
training data.

2 1. Introduction

In addition to the heading estimation, we provide a flexible framework in order to
give non-visual feedback. In general, users prefer to only get important abstracted
and aggregated information only. This highly depends on the current scenario of
the user, i.e., his position inside a building. We further present a Metric Linear
Temporal Logic (MLTL) in order to programmatically determine the current user
scenario more easily. As a proof of concept, we implemented two navigation feedback
types: one providing verbal audio feedback and a second giving vibrational feedback.

1.1 Contributions

The main contributions of this thesis are:

• A method to distinguish between trousers pocket and jacket pocket device
location,

• A new peak-based step detection depending on determined device location,

• A generalized model for heading estimation while walking,

• A method for model instance parameter determination on given training data,

• A detailed evaluation of our new method compared to other commonly used
techniques like the android-internal fused Rotation Vector or using the mag-
netic field sensor in combination with the acceleration sensor,

• A comparison between our offline and online implementation of the presented
new algorithm,

• A detailed investigation on the behavior of our method at different sensor data
sampling rates,

• A flexible approach for generating usable navigation feedback and two proto-
types using audio and vibration.

1.2 Structure of the Thesis

We present background information in Chapter 2. This includes used sensors, the
used platform, pedestrian navigation applications and the current FootPath imple-
mentation.

Due to put this thesis intro context, we continue with related work in chapter 3.
This includes Wireless Fidelity (WiFi) localization, pedestrian dead reckoning and
navigation interface types. Because of this thesis’ topic, we focus on dead reckoning
and present most common techniques for step detection, step length estimation and
heading estimation.

One main part of this thesis is our design decisions in Chapter 4. We introduce a
generalized model for heading estimation. Based on a survey we conducted about
smartphone carrying locations, we introduce two distinct model instances (trousers

1.2. Structure of the Thesis 3

pocket and jacket pocket). For this reason, we show how a device location detection
technique and show the model parameter determination via optimization on training
data. We further introduce a general framework for navigation feedback and two
feedback type: verbal audio and vibration.

Chapter 5 discusses implementation decisions and encountered issues. We introduce
an offline MATLAB and an online Java variant, wheras we focus on the online im-
plementation. We finish the chapter by presenting the navigation feedback module.

Afterwards, we focus on providing a very detailed evaluation on several issues regard-
ing the heading estimation. We compare our new approach against other available
techniques.

We finish this thesis by giving a brief overview of future work in Chapter 7 and a
conlusion in Chapter 8.

4 1. Introduction

2
Background

This chapter will introduce several topics which are necessary to understand this
thesis work. We explain basics on Inertial Navigation Systems (INSs) and Dead
Reckoning (DR). After providing a brief introduction on the used sensors of typical
smartphones, we present the Android platform. To understand the context, we
introduce FootPath, its modules and how they generally work.

2.1 Inertial Navigation Systems

INS describe self-contained navigation systems which use an Inertial Measurement
Unit (IMU) in order to estimate a moving system’s position, orientation and velocity.
Such IMUs typically contain motion and rotation sensors. Self-contained means,
that there is no external reference. Such systems are widely used for navigation
and navigation support e.g. in ships, submarines, aircrafts, guided missiles and
spacecraft [10,17].

DR is the main used concept which deduces inductively the current position from
the last position and estimated movement. This works well in theory, but is hardly
effected by errors of the measuring entities which get cumulated. Especially the
usage of current low-cost Microelectromechanical systems (MEMS) sensors is not
feasible for this task.

We show this approach in a simple example shown in Figure 2.1. We denote the
current position as (x, y) and the current acceleration as a tuple for the x- and y-
direction (ẍ, ÿ). Assuming constant acceleration, the double integrated acceleration
for a timespan t will lead to the distances ∆x and ∆y, whereas the resulting direction
angle Θ will be the arctangent of both. This leads to a new position (x′, y′) =
(x+ ∆x, y + ∆y).

6 2. Background

(x, y)

(x′, y′)

∆x

∆y

Θ

Figure 2.1 Dead Reckoning. DR deducts from the last position and current
sensor information the new estimated position. This figure shows a simple 2D case
with the origin position (x, y), the measured movements ∆x and ∆y which leads to
the new position (x′, y′). The movement-direction Θ will be the arctangent of both.

Step Detection Heading Estimation

Processing Unit

Sensordata

Predefined Data Current Location

Figure 2.2 Pedestrian Dead Reckoning. The typical modules of a PDR system.
The system uses internal sensors to determine the current movement and direction.
A processing unit uses external data and parameters to merge information for com-
puting a new estimated location.

2.1.1 Pedestrian Dead Reckoning

A specialized application of dead reckoning is the Pedestrian Dead Reckoning (PDR).
At PDR, two different approaches are widely established. These use either foot
mounted devices or some hand held device like a smartphone.

The typical PDR running on hand held devices consist of at least two different mod-
ules: step detection and heading estimation. The system may be further improved
by adding more sophisticated filtering techniques or map data. However, Figure 2.2
depicts a generalized overview of such a system.

2.2 MEMS

Microelectromechanical systems (MEMS) systems are ambient light and temperature
sensors, barometers and humidity-sensors. Such MEMS sensors are typically made
up of components ranging in the size of micrometers. Moreover, they typically have
a low weight, low power consumption and a short start-up-time. Thus, these sensors
are feasible for embedding into all kinds of everyday devices.

However, such low cost MEMS devices have a big drawback as well. They are error
prone, typically introducing drift and noise.

2.2. MEMS 7

2.2.1 Gyroscope

A MEMS Gyroscope makes use of the Coriolis effect which states that a mass moving
inside a rotating system experiences a force. The MEMS implementation pushes a
tiny mass back and forth along one axis (vibrating), whereas the Coriolis force will
make this mass veer away from this specified vibration direction and keeps vibrating
in another axis, whenever the device is rotated [37]. Such gyroscope implementations
have the main disadvantage that they are far less accurate than e.g. optical ones.

They cannot directly measure an angle, but provide an angular speed. Usually, there
are three different gyroscopes put together into a single device for full 3D-rotation.

2.2.2 Accelerometer

MEMS Accelerometers typically measure the displacement of a supported mass
against a reference frame or changes in the frequency of a vibrating element. This
is realized by small springs which bend at acceleration. They also introduce errors
such as bias and other external influences like temperature and pressure.

The typical output gives an acceleration against the gravity. Usually, there are
three different accelerometers combined on different axes for 3D-acceleration mea-
surements. In particular an accelerometer measures the force towards the sensor
itself is denoted as Fs, where Ad describes the acceleration applied to the device.
Furthermore the gravity always has impact on the acceleration applied to the de-
vice, which leads to another relation with the force towards the device denoted as
F , while assuming constant earth gravity as g = 9.80665m/s2:

Ad =
∑ Fs

mass

Ad = g +
∑ F

mass

2.2.3 Magnetic Field

There are several MEMS approaches for creating a magnetic field sensor depending
on the manufacturer and architecture. The most prominent implementation makes
use of the Hall effect. To measure the magnetic field, a current is passed through a
wire. Because of influences of the magnetic field, electrons show a higher density at
one side of the wire compared to the other one, which introduces a voltage across
the wire being proportional to the magnetic field [37].

However, due to external influences, it is not always possible to determine a reliable
orientation towards north (by estimating the orientation towards the magnetic north
pole) from the given magnetic field data. Especially inside buildings, there are often
disturbances in the magnetic field because of permanent magnets, large iron bodies
and electric current.

8 2. Background

x

z

y

N

x

z

y

Figure 2.3 Instrinsic and Extrinsic Coordinates.
Left: The measured sensor data is typically expressed as intrinsic coordinates, i.e.
relative to the device.
Right: By using the fusioned device orientation, we can transform intrinsic to ex-
trinsic coordinates, i.e. relative the to world. Note that this is only one example
how to define the axes [1].

2.2.4 Sensor Fusion

The physical sensors in general give useful information, but we can do further filtering
and combine several sensors to either improve results or just for convenience. We
will call this combining procedure Sensor Fusion. In fact, e.g. the Android platform
provides the following fused “virtual” sensors:

Linear Acceleration. The acceleration sensor returns the raw acceleration values.
This means, that these values include earth’s gravity. By removing the gravity, we
get pure linear acceleration, i.e., the relative change:

Arel
d = g + Ad

Orientation. Each compass uses the measured magnetic field of earth to get the
direction towards north which means, that the magnetic field enables determining
the actual orientation.

Rotation Vector. We have seen, that the gyroscope introduces drift and will
lead to long-term errors, but has a good short-term behavior. For stabilizing the
orientation estimation, it is possible to use the magnetic field and accelerations as
well [37].

We can use the orientation values to transform the device’s relative, intrinsic, coor-
dinates into the world, extrinsic, coordinates. Figure 2.3 shows an example of the
different coordinate systems. As the position of the device is not fixed, the transfor-
mation from intrinsic to extrinsic coordinates only consists of a three-dimensional
rotation. Thus, we can set up a rotation matrix m ∈ R3×3 for transformation.
With this matrix, we can easily convert e.g. acceleration values via a simple matrix
multiplication into accelerations relative to the world:

Aextrinsic = m · Aintrinsic.

2.3. Android 9

We will call the special case, that the z-axis of intrinsic and extrinsic coordinates
already match, null-orientation. In this case we can already use the magnetic field
values without rotation to determine the orientation towards north.

2.3 Android

Android is an open source software stack, that includes the operating system, mid-
dleware and a set of key mobile applications which have originally been designed for
mobile phones. Moreover, Android also provides a wide range of libraries. The first
version has been released in late 2008 by the Open Handset Alliance (OHA) under
the lead of Google. The source code is released under the Apache Software License
at version 2 [36].

Later on, a version for tablets (Honeycomb) has been published followed by the
current version family Android 4 (Ice Cream Sandwich (ICS) and Jelly Bean). The
operating system is based on a linux kernel, whereas applications are executed in a
specialized Java virtual machine, the Dalvik VM. Applications ship as single package
files and can be easily installed. Today, a big variety of devices use Android - Looking
into market reveals that Android is in 2012 the most successful Operating System
(OS) for mobile devices with over 68% market share, followed by iOS with about
17% which is only available on Apple devices. Table 2.1 shows a complete market
overview.

OS
Q2 2012 Q2 2012 Q2 2011 Q2 2011

Shipments Market share Shipments Market share

Android 104.8 68.8% 50.8 46.9%
iOS 26.0 16.9% 20.4 18.8%
BlackBarry OS 7.4 4.8% 12.5 11.5%
Symbian 6.8 4.4% 18.3 16.9%
Windows Phone 7/
Windows Mobile 5.4 3.5% 2.5 2.3%
Others 3.6 5.8% 3.9 3.5

Table 2.1 Smartphone Operating Systems (OSs) Q2 2012 [Unit in Mil-
lions] [5]. Android is by far the market leader with an incresing shipment rate from
2011 to 2012.

Freely available source code, easy application development and distribution (e.g. via
Google Play) is seen as the key factor for its success today. The main language for all
Android applications is Java, whereas the Java Native Interface (JNI) also supports
C and C++ code. Moreover, Android is considered as the main reason for the new
blossom and popularity of Java [38].

Due to the openness, Android is adequate for rapid prototyping and development in
general. The Application Programming Interface (API) does not always allow deep
access into the system, but rooting1 the device gives full access. This also enables
overcoming limitations set by carriers or hardware manufacturers.

1Rooting describes the process of giving a user privileged access to the Android subsystem.

10 2. Background

2.4 Navigation Applications

Navigation systems in general have become very popular especially for cars over
the last decade. Although the same navigation techniques mostly using Global
Positioning System (GPS) work for pedestrians well, indoor navigation introduces
some serious issues. On the one hand, all navigation systems normally rely on map
data. On the other hand, GPS may not be accurate enough at private usage for
pedestrian navigation or even may not be available - at least indoors. Furthermore,
having pure GPS-based systems and some indoor counterpart, the next step will be
combining both techniques into a hybrid navigation system.

However, indoor navigation has some serious applications. First of all, such systems
may aid blind or visually impaired people through buildings. Moreover typical larger
buildings like airports, hospitals or shopping malls may be very complex. Due to
complexity, the typical larger buildings provide floor plans or “you-are-here” maps.
Apparently, such aids introduce time overhead. Besides classical navigation, it is
furthermore possible to extend such indoor positioning system to provide location
aware services.

2.5 FootPath

The context of this work is FootPath which is a project of the Chair of Commu-
nication and Distributed Systems at Rheinisch Westfälische Technische Hochschule
Aachen (RWTH) which already started in 2010. The main task of FootPath is cur-
rently pure indoor pedestrian navigation on Android smartphones. The main reason
for using smartphones is the wide and cheap availability of such devices. Moreover,
some specialized e.g. foot mounted sensor devices are not practical in everyday life.

FootPath
Matching
Algorithm

FirstFit

BestFit

MultiFit

Graphical User Interface

Movement
Detection

Step
Detection

.h263

Figure 2.4 FootPath: Major Functional Building Blocks. The location esti-
mation uses two major parts: the movement determination and matching algorithm.
Feedback is provided via a GUI.

We can split the navigation process into three functional building blocks. We illus-
trate an overview in Figure 2.4. First of all, FootPath uses acceleration sensor data
to detect steps that the user makes - or the device’s camera to detect movement
from its video stream. Furthermore, it calculates a heading estimation out of mag-
netic field sensor data. After having detected movement and direction, a matching

2.5. FootPath 11

algorithm finally estimates the user’s current position along a predefined path on the
map by using sequence aligning, which compares expected heading values towards
the measured ones.

Moreover, while navigating, the system shows a graphical user interface displaying
the current map with the estimated user’s position, the selected path and the cur-
rently covered path. However, we will dive into the functionalities in much more
detail in Section 4.1.

2.5.1 Current Movement Detection

To detect movement, FoothPath currently supports two different techniques. The
simple step detection observes accelerometer data and tries to detect changes in
the z-acceleration. For this reason, the data will be smoothed by a simple Low-Pass
(LP)-filter first. Afterwards a sliding window analyzes the acceleration changes be-
tween successive values. We detect a new step, whenever this change is greater than
a predefined threshold. After detection, there will be a timeout interval to prevent
false detections. We show an overview in more detail in Figure 2.5. The current
user’s bearing will simply use the internal magnetic compass. A predefined step
length together with the step count allows to calculate the covered distance.

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
4

6

8

10

12

14
window timeout

≥ p

time [s]

z-
ac

ce
le

ra
ti

on
[m

/
s2

]

smoothed
steps

Figure 2.5 Simple Step Detection. The simple step detection finds a rapid
decreasing z-acceleration to detect a new step by searching a window of five sensor
values. We detect a new step whenever the decrease is greater than p = 2m/s2.
Afterwards there will be a timeout interval (here 333ms) to prevent false positives.

Another method, FlowPath, to determine movement uses the front-camera’s video
stream. The main idea is to use the optical flow to calculate the device’s movement.
FootPath does not calculate the optical flow explicitly as this would be by far too
costly in terms of calculation, but exploits the video stream’s compression technique.

12 2. Background

The used compression (H.263) separates the image into certain macro blocks which
will each move from frame to frame due to the similarity of sequential images [22].
As this actually happens with hardware accelerated video-compression, there is no
need to calculate image features and to match them. In order to determine the
overall movement (amount and direction) of the device, the system extracts macro
block movement vectors [8].

2.5.2 Matching Algorithm

The most crucial part of FootPath is the matching algorithm. The step detection
gives step-wise movement information with a certain distance and direction. To
track the user’s position on a given map, or more precisely a route, the matching
algorithm tries to correlate the route’s expected directions with the measured ones
from the step detection. In fact, the more a route involves bearing changes, the
better the matching typically works. There are currently three different match-
ing algorithms implemented: FirstFit, BestFit and MultiFit, wheras we show an
overview of matching techniques in Figure 2.6.

Map:

S
M Step Headings Expected from Map

Detected Step Headings Direct Matching
Lookeahead Matching

BestFit Algorithm:

S

M

FirstFit Algorithm:

S

M

Figure 2.6 Matching Algorithmsin Comparison.
Top: The given path on the map with the expected bearings.
Middle: FirstFit alignment.
Bottom: BestFit alignment [9].

FirstFit. FirstFit consists of two matching modes. The Direct Matching Mode
(DMM) is awaiting the next expected step bearing α given a predefined acceptance
distance, typically ^(α, β) ≤ 42◦. The user’s position updates if the measured step
bearing β corresponds to the expected one. If this is not the case for a defined
amount successive steps (typically k = 5), it is very likely, that the system has
underestimated the step length. Thus, the matching method changes to Lookahead
Matching Mode (LMM).

At first, the LMM tries to find (inside the range of the next k expected bearings) a
matching expected bearing angle inside the given acceptance range. The algorithm

2.5. FootPath 13

resumes in DMM if it finds one. Otherwise the algorithm remains in the lookahead
mode and tries to find a segment of k = 5 consecutively matching headings on the
path. The next upcoming steps are now collected until this segment meets the last
unmatching expected step. After having found this connection, the algorithm can
proceed in DMM [9].

BestFit. BestFit uses a sequence aligning algorithm which is also prominent in
bioinformatics and similar fields. The idea is to reduce the measured bearing to
expected bearing mapping to a string matching problem. This introduces a scoring
function which gives a penalty to higher differences between expected and measured
bearings. A dynamic programming approach which spans a matrix representing the
scored relation between the expected and the measured step bearings can then solve
this problem.
The most probable covered path, i.e. estimated user position, is the matrix entry
with the smallest penalty value [9].

MultiFit. MultiFit is a natural extension of the BestFit idea. It follows multiple
possible paths instead of a single path. The algorithm correlates expected to mea-
sured bearings with a scoring function similar to the one of BestFit for each path.
The most probable estimated user position will then be the scoring entry with the
smallest penalty score. For efficiency, a tree datastructure, which contains parts
of the BestFit matrix (a partial penalty matrix), exploits typical shared prefixes
of several routes. Breadth-first traversing of the complete tree allows the efficient
calculation of the estimated user position [8].

2.5.3 Current Map Modeling

The maps used in FootPath use the OpenStreetMap Extensible Markup Language
(XML) format which is simple, portable and an established standard. The Java
OpenStreetMap Editor (JOSM) tool allows creation and modification conveniently.
Although there are properties defined by the OpenStreetMap Community, we have to
model some more parameters additionally. The Open Street Map (OSM) file format
supports nodes each with an absolute location (latitude and longitude) and a set
of key-value pairs. Moreover the format supports directed edge-sequences between
such nodes which also may have a set of key-value pairs.

For modeling buildings and their interior, all nodes and edges have a key for the
floor-level in general. Moreover, they have a value indoor={yes, no} which in-
dicates being indoor or outdoor. The format represents walls as edges witch the
key buildingpart=wall; Note that outer building walls are defined as non-indoor.
Special areas like elevators or steps will have a corresponding key-value pair build-
ingpart={steps, elevator}.

For actual navigation, we represent possible ways through the building by edges each
connecting two nodes which may have extra information like the key name=Char*
for specific room-names or building=entrance for building entries.

The connecting edges introduce more information as they indicate whether the region
is accessible by wheelchair (wheelchair=yes) or not. Especially stairs and steps
are not usable by wheelchair and provide additional data like the number of steps
(steps=n ∈ N) as well as the tag highway=steps by OSM convention [2].

14 2. Background

2.5.4 User Interface

The user interface consists of two different main screens, the main menu and navi-
gation. We provide examples in Figure 2.7. The menu allows to load map data and
to select a starting location as well as a destination for navigation. Furthermore, it
allows to select the desired matching algorithm and movement detection type. The
simple step detection relies on an estimation of the user’s step length which can also
be configured here. While navigating, the application displays the current map with
the user’s current estimated location. The map includes map data like walls, stairs
and elevators.

Figure 2.7 Navigation User Inferface.
Left: The FootPath navigation interface. It shows the current map and calculated
route (green). Moreover, it shows information about the covered path (white) and
the number of detected steps. A compass shows the current direction towards north.
Moreover, the interface also gives the opportunity to pan and zoom with common
gestures.
Right: The main menu allows to load map data, configure the step length, select
current location and destination as well as used modules for navigation.

2.6 Summary

We have introduced a basic background of inertial navigation and dead reckoning
(2.1). Furthermore, we have presented the different types of MEMS sensors and
typical sensor fusion applications (2.2). This is followed by a short introduction
to Android (2.3) and navigation applications in general (2.4). This chapter will
finish with introducing FootPath (2.5). We explain and discuss the overall structure
and different modules which includes the current movement detection and matching
algorithm as well as the user interface.

3
Related Work

In this chapter, we will give an overview on inertial navigation. Although this is not
a new topic, in recent years, it has become an actively studied research area since
Inertial Measurement Unit (IMU)-enabled devices (e.g. smartphones) are wide-
spread and cheap. After discussing Wireless Fidelity (WiFi)-based localization, we
elaborate on Dead Reckoning with a special focus on heading estimation and step
detection as well as step length estimation. We furthermore show a comparison
of Pedestrian Dead Reckoning (PDR) results from contributions of several authors.
Finally, we introduce different types of navigation interfaces which are visual audio
and vibration feedback.

3.1 WiFi-Localization

Besides Dead Reckoning (DR), there have been solutions published which only use
WiFi fingerprinting for localization and navigation. While, the main disadvantage
is the need for infrastructure. Nevertheless, such approaches may be useful and are
often combined with PDR.

Generally, providing a WiFi-localization system consists of two phases - (1) informa-
tion retrieval and (2) usage afterwards. The information retrieval phase is responsi-
ble for creating and filling a fingerprint database. Such fingerprints usually contain
RSSI values towards available Access Points (APs) in a certain geographic location.
Then, estimating the current device location results in a matching towards possible
locations in the database. Bahl et al. present an implementation of this method
in [6].

But this simple approach has a drawback as well. The Received Signal Strength
Indicator (RSSI) values suffer from a heavy variance - e.g. different device types,
directions and carrying locations as well as environmental changes lead to heavy
changes in the receiving power. However, there are approaches to overcome this
issue, like Kim et al. in [30].

16 3. Related Work

3.2 Dead Reckoning

DR, i.e. PDR, describes the DR approach (see 2.1) for pedestrians, where the dis-
placement is represented by an amount of steps which each have a direction and step
length. The main reason for dead reckoning is the unavailability - or at least the
degraded signal - of Global Positioning System (GPS) indoors. Most of the solutions
describe two different locations for the sensors, foot mounted devices and hand-held
ones. Foot mounted devices enable better analysis of walking behavior than others,
thus we will first introduce these approaches. In general, we can separate the move-
ment determination into two different functional blocks. The heading estimation
tries to detect the current user orientation, whereas the movement determination
tries to estimate actual movement which is typically done via step detection.

3.2.1 Foot-Mounted Devices

Foot-mounted PDR systems enable sophisticated analysis and modeling of the user’s
walking behavior. Human walking can be split into different phases of the foot
movement. Kim et al. present a model which consists of two swing phases as well
as the Heel-touch down [29].

Such devices typically use accelerometers and gyroscopes as well as sometimes force
sensitive capacitors to deduct walking. A main advantage of the positioning on the
foot (or under the shoe) are Zero Velocity Update (ZUPT). As discussed before (2.2),
the used IMU sensors introduce a high amount of errors which get accumulated over
time yielding unfeasible results already after a few meters of walking. Recognition
of a stationary attitude while a stance phase of the IMU can eliminate this issue
by assuming having zero velocity. With this technique, the sensor data can be
periodically recalibrated which resets the error each time.
Most research on this type of IMU positioning typically use unaided DR approaches
[33,39,50].

3.2.2 Heading Estimation

The typical data source for heading estimation is the magnetic compass or gyroscope.
Some approaches even combine both sensor data or include acceleration data. Most
approaches concentrate on a well defined attitude of the IMU. In order to support
other locations, a projection from intrinsic to extrinsic coordinates for the heading
estimation is usually used to have a “virtually” well defined attitude.

In general, the magnetic field sensor performs well outdoors, but because of magnetic
disturbances indoors, it gives false data in some cases. E.g. Liu et al. [35] show that
the magnetic compass itself has a Root Mean Squared Error (RMSE) of ≈ 10◦ while
not moving, whereas this error rises up to about 27◦ while walking.

Park et al. [40] present more information on the error characteristics at different
device locations. Depending on their scenario, while walking, the error variation
changes between about 10◦ up to 25◦. They investigated on e.g. the trouser pocket
and two hand held positions (calling and messaging). Looking into their statistics

3.2. Dead Reckoning 17

reveals, that apparently the trouser location shows the biggest sensitivity to errors
in the measured heading values.

In contrast to this, the gyroscope works unaffected by such influences and gives
good results. However, the gyroscope introduces a high amount of drift, such that
errors get accumulated. This means that the magnetic compass gives good long term
accuracy, whereas the gyroscope is only valid for a very limited time span. For that
reason, there are several approaches to combine both sensors. These either compare
the different calculated headings by a threshold, e.g. by Kothari et al. [31], or use a
correlation measurement between both sensor outputs e.g. Kang et al. [27].

Nevertheless, the error of the magnetic compass is usually disregarded [31,32,35,40,
42–44,49]. Beauregard and Haas [7] compensate this via including GPS data which
of course restricts the usage to outdoors. For example Fink et al. [12] as well as
Hong et al. [21] only use gyroscope data for heading estimation anyway.

3.2.2.1 More sophisticated approaches

Rai et al. [43] show another method to determine the user’s heading. First, they
introduce a magnetic offset which shows in tests an error of about 15◦ for different
locations in a building. Moreover they investigate on the Fourier spectrum of a
typical walking pattern. The spectrum shows a central frequency at about 2Hz
which represents both strides - of the left and right leg. Furthermore, they use a
second harmonic to determine the user’s moving direction. However, as they only
use the unsigned magnitude Fourier transform, they cannot distinguish between two
valid solutions which are in opposite to each other. They state, that their heading
estimation shows an error in a range of about 60◦.

3.2.3 Movement and Step Detection

Besides the heading estimation, we need to detect movement in general. This is
usually done by a method of step detection via e.g. acceleration sensor data. Other
approaches are e.g. vision-aided using camera input to determine or at least support
the movement determination by optical flow.

In this section, we will explain and discuss different common approaches for actual
step detection briefly.

3.2.3.1 Zero-Crossing

One of the most prominent methods is, to determine zero crossings (ZCs) in the
acceleration, e.g. used by Beauregard et al. [7]. For this reason, the acceleration
values get first smoothed by a Low-Pass (LP) filter and then step counting uses either

the acceleration magnitude a =
√

(a2x + a2y + a2z) − g or the (linear) z-acceleration.

Usually, developers introduce a threshold after having found a certain crossing event
(step) to prevent false positives. This has the disadvantage that the defined threshold
may be too long or too short in generic cases.

18 3. Related Work

0 0.5 1 1.5 2 2.5 3 3.5 4
−15

−10

−5

0

5

10

15

20

time [s]

lin
ea

r
z-

ac
ce

le
ra

ti
on

[m
/
s2

]

raw
smoothed

peaks
zero crossings

Figure 3.1 Peak- and zero crossing (ZC) Step Detection in Comparison.
Typically, after the z-acceleration gets smoothed (here by a box-filter at a size of
250ms), either peaks or zero crossings are calculated using a filtering technique. Due
to the big smoothing kernel, the ZCs detection is unambiguous, whereas we have to
use a timing-threshold for peak detection (here 200ms).

A simpler method which does not exactly count ZCs is to just searches for a thresh-
olded decrease in acceleration, e.g. used by Bitsch et al. [9].

3.2.3.2 Peak

Peak step detection is another prominent method to count steps (e.g. used in [31,
44, 49]). It observes the smoothed acceleration data and deducts local maxima and
minima sequences inside a sliding window. A maximum is typically considered as
valid, if it exceeds a certain upper threshold. The same holds for the minima with
a predefined lower threshold. Furthermore, some implementations also introduce a
cool-down threshold before detecting the next step.

An improvement to the fixed thresholds are dynamically adapted thresholds used
by Fink et al. [12] and Pratama et al. [42]. They aggregate data values into a sum
while storing maximum and minimum sums over a defined window. The dynamic
threshold may then be some combination of both values (e.g. exactly in between).

Kang et al. [27] compare results using ZC and peak step detection in their algorithm.
Their results show that both approaches give similar results. Shin et al. [31] show
some experimental results of their peak step detection to distinguish between three
different states of movement: stop, walking and running.

3.2.3.3 Gyroscope

Hong et al. [21] present another method to detect steps. They have observed the
turn insufficient effect which states, that under some circumstances (e.g. the devices

3.2. Dead Reckoning 19

location is straight in the trouser front pocket), the angular velocity of the y-axis
while walking will be lower than while turning. They exploit this observation to
detect steps and turning events. Their algorithm results for two different test paths
(≈200m and 110m) in an average return position error of 1.33%.

In contrast to this, they present results using pure gyroscope and magnetic field
sensor data which yield errors between 10% and 20% (which are most likely a result
of accumulated errors).

3.2.3.4 Autocorrelation

Due to the repetitive nature of walking procedure, it is possible to exploit this for
single step or movement detection. Rai et al. [43] present a new idea for step detec-
tion: Autocorrelation. As the acceleration pattern at walking is repetitive, it shows
a strong correlation. To exploit this for step detection, they suggest to use a nor-
malized autocorrelation technique over a certain window. The overall performance
shows only a small amount of false positives or negatives for all different tested
device locations (hand, trouser front and backpocket, shirt pocket and handbag).

3.2.3.5 Vision-aided

Visual information of the camera, i.e. a sequence of images, can provide information
of the current devices movement which enables restricting the drift error of the IMU.
The main idea is to extract this information from some type of optical flow, where
we shortly present three different techniques.

Reference Database. Assuming we have a database with reference pictures of
all possible navigation locations including its exact coordinates, a possible position
estimation algorithm matches actual camera-images against the database. There
are countless approaches for this purpose where fundamentals to this are presented
by Forsyth and Ponce in [13]. The main disadvantage of this technique is the need
for construction such a database which will be in most practical cases far too much
overhead.

Feature Tacking. Hide and Botterill [19] describe classical approach for determin-
ing the displacement of the device. In general, they follow the DR approach, but
furthermore, they calculate movement from images, where a Kalman Filter combines
both inputs. Feature tracking allows optical flow determination. At first, a fast cor-
ner detection method will identify possible features. These features of subsequent
images are then compared in terms of similarity as a sum-of-squares difference. A Di-
rect Linear Transform (DLT) determines the homography-matrix H with the found
correspondences. The homography matrix describes the change from one picture to
the next. For good results, a random sample concensus (RANSAC) approach en-
sures validity of selected feature points. Finally, they get rotation R and translation
d−1t: H = R + d−1tnT by decomposition.

20 3. Related Work

Vanishing Point. The vanishing point describes the point at infinite distance,
where all real-world parallel lines cross each other in images. Although it is not
present at certain motion behavior (e.g. one-axis rotation only), it can be determined
in most practical cases like corridors. Ruotsalainen et al. [45] present a simple
technique to do so. At first, they detect edges of objects and identify straight lines.
Afterwards, due to the characteristic of crossing lines, a voting approach estimates
the vanishing point. As the pitch and roll (rotational change in x- and y-direction
in terms of the extrinsic coordinate system seen in Figure 2.3) can be restricted,
they use a simple equation to get a heading-change estimation. They introduce an
approach to combine these results with IMU sensor data via a Kalman Filter [46].

Exploiting Video Compression. Bitsch et al. [8] present another approach ex-
ploiting the nature of video compression. They measure the current optical flow
by extracting the movement vectors of the cameras compressed video stream. We
already discussed this at Section 2.5.1.

3.2.4 Step Length Estimation

The PDR algorithms usually work with the two mentioned components - heading
estimation and step detection. Another crucial part consists of the correct step
length estimation. Wrong estimated step length values accumulate over time and
unboundedly increase the error.

Besides other methods, a simple version to get a usable value just predefines a certain
fixed value e.g. by a formula using some linear estimation function with a person’s
body height as a single parameter [9].

Foot mounted devices have the big advantage of the zero velocity updates which
enable a new calibrated measurement for each step. Furthermore these devices
typically have other hardware than Microelectromechanical systems (MEMS) sensors
available. Simple integration of velocities will give useful results.

Randell et al. [44] introduce several ideas for step length estimation. Their first
approach uses a preset of minimum and maximum step length. A second method
scales a predefined step length depending on the acceleration magnitude of each
step. The third method includes using GPS data.

Weinberg [53] introduced a commonly accepted and more sophisticated model (e.g.
used in [24, 27]). The underlying geometry model uses the amount of bouncing (z-
axis displacement) of the hip while walking, see Figure 3.2. His model states by
exploiting the similar angles α = θ, that Stride = 2 · Bounce/α, where θ denotes
the angle between left and right leg and α the angle between right leg and the next
steps hip position. Weinberg roughly estimates the distance for one stride with the
following formula, where Amax and Amin denote the min and max z-component value
of acceleration inside a single stride (note that k will be some correction value defined
by the developer):

DistanceW = k · 4
√
Amax − Amin. (3.1)

3.2. Dead Reckoning 21

α

θ

Hip

Leg: left right left right

Bounce

Figure 3.2 Weinberg Stride Length Estimation Geometry. The Weinberg
model estimated the step length on the basis of Bounce magnitude of the walking
procedure by using an approximation of the similar angles α and θ.

Kim et al. introduce in [29] another experimental derived formula, where N denotes
the number of samples for a single stride:

DistanceK = k ·
3

√∑N
k=1 |Ak|
N

. (3.2)

Scarlett [47] presents a third equation which correlates the minmum and maximum
acceleration of a single stride:

DistanceS = k ·

∑N
k=1 |Ak|
N

− Amin

Amax − Amin

. (3.3)

All models can be easily adapted e.g. with the factor k. However, Pratama et
al. [42] present an error estimation for each model, which shows that the Scarlett
model outperforms all others. The Weinberg model is about 3% and the Kim model
about 22% worse. Moreover, there are other models in use which are very similar to
the introduced ones, but some regard more information e.g. like step time. Jahn et
al. [23] show a theoretical error analysis and practical comparison as well.

3.2.5 Including Map Data

Although the presented techniques are already suited for navigation, including map
data to the algorithms further improves performance. Rai et al. [43] as well as
Kothari et al. [31] introduce a particle filter which keeps track of possible position-
ing probabilities. Shin et al. [49] propose a simple map matching algorithm which
correlates the current user’s position to nearest links and corners.

Using a Hidden Markov Model (HMM) for further improvements is similar to this
approach, e.g. used by Liu et al. [35].

Bitsch et al. [9] introduce another map-matching approach which uses sequence
aligning techniques to correlate measured headings to expected bearing on a given
path.

22 3. Related Work

3.2.6 Further Improvements

Neural networks. Shin et al. as well as Beauregard and Park et al. use Neural
Networks (NNs) for further improving the step detection [7, 40, 49]. Such NNs get
predefined features as input (e.g. step frequency, accelerometer peak values and
heading) and calculate predefined results such as step length estimation and heading
information. In fact, they act like a black box.

Kalman Filter. Another method to gain better performance is using a Kalman-
filter to smooth results. It is widely used, e.g. in [15, 25, 29, 32, 50]. Simply said, a
Kalman filter may be useful whenever a measured system shows noise as well as the
measurement contains noise. Both error sources are finally put together via a specific
model for each. The filter roughly contains two different steps - the measurement
and time update. However, system modeling and setting up a Kalman filter is
a complex process as the Kalman filter is often misunderstood and even wrongly
used (resulting in a simple LP). Hence, we will not focus on this or the underlying
statistical mathematics in this work any further.

Corridor environment restriction. Park et al. [40] introduce an approach which
uses typical proposed methods: magnetic compass for heading estimation and accel-
eration data for step detection, but restrict used map data to perpendicular corridor
design. This enables to stabilize the heading estimation values by detection corners
along a navigation path - the rough idea is to only assume a corner when reaching
a certain threshold of heading change. Moreover they distinguish different device
positions by tracking the orientation sensor values to keep track of relative heading
changes with a mean detection error of 5.75%.

Barometer. Todays smartphones have integrated air pressure sensors. Air pressure
may be used to improve locating a user in terms of particle filters and map matching
integration as they are typically sufficient precise. Keller et al. [28] have evaluated on
the sensor output and conclude, that typical errors lead to wrong altitude estimations
of about ±0.85m. Feliz et al. [11] also introduce the possibility to improve PDR via
barometer sensor data.

3.2.7 Adding WiFi

Combining PDR with WiFi fingerprinting gives more useful information. E.g. Kothari
et al. as well as Rai et al. present an architecture which uses PDR to track the user’s
position combined with a particle filter [31,43]. Furthermore, their frameworks also
includes WiFi scanning (measuring the RSSI values towards proximate APs) while
navigating which helps to ensure certain locations. While Kothari et al. assume hav-
ing a precollected WiFi database with information about APs, their signal strength
and geographic location, Rai et al. proposed a crowdsourcing approach. However,
both solutions have the clear advantage, that (subsequent) user’s will not have to set
their current start location for PDR anymore as this information may be available
from the WiFi information.

3.2. Dead Reckoning 23

3.2.8 Results

We have seen a lot of different methods - in placement of the device - and to get a
heading as well as movement estimation. All implementations have certain differ-
ent design decisions and parameter which makes the evaluations hard to compare.
Nevertheless, Table 3.1 shows some comparable results.

In general, we have to interpret such results with care. The resulting error usually
highly depends on the scenario. The most obvious observation is, that all foot
mounted approaches provide good results with a low error rate mostly at about 1%.

Moreover, the other methods show, that most results are suited for navigation pur-
poses. Step detection seems to work reliably regardless of the detection method. Al-
though the exact methods are often not mentioned, comparing results which specify
this explicitly, we can conclude that we get similar results in most cases.
However, in the context of this thesis, the device location is the most important
and interesting question. The cases depicting the position, are mostly different from
hand held. Investigation on these cases at the results of Hong et al. and Randell
et al. shows, that the typical error becomes huge compared to others. Pratama et
al. [42] mention that their technique is suitable for any location while not giving
exact details on this. However, they introduce the possibility for the intrinsic to
extrinsic transformation without any further analysis.

From these results, we conclude, that (at least to our knowledge) only few researchers
have analyzed locations other than hand held (for non-foot mounted devices) in
detail. All known cases which use a different location lead to the conclusion, that
the dead reckoning error is much higher in general. Reasons for this may be an
unreliability of the magnetic compass direction if the device is not in null-orientation
together with higher dynamics in the whole devices movement and may lead to less
stable sensor output. The data is typically harder to analyze and exploit for reliable
heading estimation as well as step detection.

24 3. Related Work

Approach Heading Step Step Dist rel. Err Indoor Device
Detection Length Location

Kothari [31] mag peak n/a 100m 6%
√

any
Hong [21] gyro gyro n/a 210m 9.8%

√
trouser

mag gyro 210m 9.2%
√

-pocket
adv. gyro 210m 0.9%

√

Randell [44] gyro, mag peak n/a 279m 9.7% - handheld
peak 131m 29.8% - backpack
peak 126m 3.2% - shoulder

Pratama [42] gyro, mag peak fixed 30m 3.5%
√

(any)
peak scarlett 30m 2.0%

√

peak weinberg 30m 2.2%
√

peak kim 30m 2.6%
√

Kang [27] gyro peak weinberg 75m 3.2%
√

n/a
mag peak 75m 26.1%

√

adv. peak 75m 1.3%
√

gyro zc 75m 3.0%
√

mag zc 75m 19.3%
√

adv. zc 75m 1.7%
√

Kim [29] gyro, mag - kim 74m 3.0%
√

foot
- 146m 4.2%

√

Li [33] gyro, mag - accels 289m 1.2%
√

foot
- 192m 0.9%

√

Godha [15] gyro, GPS - accels 78m 1.2% (
√

) foot
- 234m 0.9% (

√
)

Ojeda [39] gyro - accels 524m (0.5%) (
√

) foot

Table 3.1 Overview: Dead Reckoning Results. This tables combines experi-
mental results of different approaches whenever suitable for this comparison. Note
that some values where not mentioned in the work of the authors and are thus
marked as not available (n/a). The heading column describes the used sensors for
heading determination, where gyro and mag correspond to the gyroscope and mag-
netic field sensor. As there are sometimes some more sophisticated fusion techniques
uses, we marked these as advanced (adv.). The step detections used are the peak,
gyro and ZC methods. We have introduced the main methods for step length es-
timation, where accelerations at the foot mounted devices correspond to the direct
integration of velocity.

3.3. Navigation Interfaces 25

3.3 Navigation Interfaces

Most navigation systems use a visual display and audio feedback (e.g. commercial
car navigation systems). We will introduce some possibilities how to give reasonable
feedback for the different media - these are visual, audio and vibration. All of these
media are natively available on all current smartphones.

3.3.1 Visual

Typical visual interfaces work in three fundamentally different ways or combine
them. The first shows a map with the calculated route, the user’s position and the
covered path. For example, this map may be (automatically) rotated to match the
current user’s heading and allows zooming and panning. The second method to give
routing information in a turn-by-turn manner, are arrows. Showing an arrow for the
next turn typically includes information about the distance towards the next event.
Lastly, giving a pure textual representation may also provide enough navigation
information.

However, the map-approach together with turn-by-turn commands via arrows has
proven suitable and is well-established in commercial products.

Focusing on pedestrian navigation, another possibility may support the presented
DR approaches. Photos of landmarks seem to be the most appropriate method for
pedestrian (outdoor) navigation. Results of Goodman et al. [16] show, that a picture-
based navigation can lead to less time spent on self-orientation of the user, especially
for older people. Stark et al. [52] state, that such images decrease insecurity about
the shortest way as well. Unfortunately, this method has the big disadvantage, that
it relies on the occurrence of unique landmarks and needs highly detailed models,
i.e. suitable images.

Holland et al. [20] give some reasons, why a visual interface may not be suitable in
all kinds of pedestrian navigation situations. The strongest argument is, that the
user may not be able to give enough attention to a visual interfaces while walking
or doing something different.

3.3.2 Audio

In general, there are different varieties for feedback via audio. The verbal form gives
navigation instructions via speech (typically either with recorded audio or synthe-
sized speech using a Text-to-Speech (TTS) engine). Guidice et al. [14] investigated
such verbal navigation methods and conclude, that minimal geometric information
is sufficient for way finding. Finally, Stark et al. [52] show, that if a route is straight
without many open spaces, audio navigation seems to be the most appropriate con-
cept.

Besides verbal feedback, different sounds may give suitable information for naviga-
tion in a turn-by-turn manner. A different pitch, rhythm and amplitude yield several
varieties for sound. We can separate the main navigation information into direction
and distance, where some 3D-audio rendering or at least stereo sound with some

26 3. Related Work

drawbacks (need of headphones or two distinct speakers) can encode the direction.
Moreover, another encoding would consist of a set of special patterns for commands
like turning left or right. The distance towards the next event is often encoded by a
“Geiger counter” model, introducing a higher pattern frequency when approaching
further towards a destination, e.g. presented by Holand et al. [20]. E.g. Wilson et
al. [54] switch both pattern properties.

Soundmarks or ad hoc audio annotations may enhance the audio navigation like
proposed by Kainulaien et al. and Wilson et al. [26,54].

3.3.3 Vibration

We can adopt the concepts of non-verbal audio navigation for tactile feedback, i.e.
vibration. Lin et al. [34] introduce a method to encode the direction into different
vibration rhythms. Their method encodes the distance towards the next turning
event into the tempo of these rhythms which increases gradually while approaching
this destination. Evaluation shows the correct perception of these vibration pat-
terns at 99%. For a more distinct direction information, Pielot et al. [41] present an
alternative encoding of the direction, whereas the frequency also gives the distance
information. Their approach (depicted in Figure 3.3) encodes a heading with two
subsequent pulses - either a short pulse followed by a varying longer pulse for direc-
tions towards left and the same pattern reversed for headings to the right, whereas
the length of the second pulse encodes the difference between current heading and
the heading towards the next destination.

2x short = in front of the user

3x short = behind of the user

longer 2nd pulse = further rightlonger 1st pulse = further left

Figure 3.3 Vibration Direction Encoding. In general, two pulses determine
the desired navigation direction.
Two short pulses denote the correct heading along the route, three short pulses state,
that the user has to turn around. Different length on the first or second pulse denote
that the desired navigation direction is either to the left (1st pulse varies) or to the
right (2nd pulse varies) of the user [41].

3.4. Summary 27

3.4 Summary

We have introduced and discussed the different methods for indoor localization. This
includes WiFi aided approaches (3.1) as well as PDR (3.2). The PDR is typically
aided by foot-mounted or handheld devices. These methods typically use a heading
estimation technique (3.2.2) in conjunction with a step detection (3.2.3) and a step
length estimation (3.2.4). The heading estimation usually uses the magnetic field
sensor or the gyroscope, whereas the step detection uses the acceleration sensor.
Another approach to this has its origin in computer vision. We have seen some
fundamental methods to extract movement information out of subsequent images
by tracking, estimation the vanishing point or by exploiting the compressed camera
video stream. The step length may either be fixed or estimated by a specific model
which also uses acceleration data.

PDR results can be improved by adding specific filtering techniques, e.g. Kalman
filters (3.2.6). Adding more data like a building map or WiFi information improves
the overall performance of the localization (3.2.5, 3.2.7).

Current navigation interfaces usually make use of the devices display. Showing a
map and giving turn-by-turn instructions in a visually and verbal via audio are a
commonly established way to give feedback. We have shown how to use other media
like vibration and how we can encode important navigation information (3.3).

28 3. Related Work

4
Design

We have already given a rough introduction to FootPath and how it works in Section
2.5. This chapter will explain and discuss important design decisions which mean,
that we will go into detail on new functional building blocks and how they are
integrated with FootPath.

4.1 Overall Design Considerations - Layered Design

The work done in this thesis integrates with the existing FootPath project. We de-
sign new components as single modules without interacting too heavily with others
to keep things simple. Thus, we introduce a layered design depicted in Figure 4.1.
The movement determination only needs sensor data (or camera input). The match-
ing algorithm then uses recognized steps and the corresponding estimated heading
to correlate these to a given navigation path. The navigation module will receive
new location information and decides whether or not to give user feedback or to
recalculate a new route.

4.2 New Model for Step and Direction Detection

We have seen the current method to detect steps and determine the corresponding
heading information in Section 2.5.1. However, the implementation relies on the as-
sumption carrying the device in a null orientation - or at least a predefined attitude.
We want to avoid this constraint to make FootPath able to detect steps and the
heading independent from the attitude of the device. This means making it possible
to do navigation while carrying the device e.g. in the jacket pocket. Thus, we have
developed a new method to detect steps and the heading.

30 4. Design

Navigation

Matching Algorithm

Movement Detection

User Feedback

Sensor Values

Step, Bearing

New LocationNew Route

Figure 4.1 Layer Design of (new) Components. We have a separate movement
detection, matching algorithm and feedback module which communicate via well
defined interfaces for simplicity.

4.2.1 Functional Requirements Analysis

The main requirement is to detect the movement of a user, i.e. the device, indepen-
dent of the attitude. We do this by following the current approach detecting the
user’s steps while estimating the current heading. As the movement determination
should be self-contained, we do not want to give any external user determined in-
formation into the system. Thus, available data sources are only the devices sensors
being primarily the gyroscope, accelerometer and magnetic field sensor. With sensor
fusion techniques, we can extract more sophisticated data out of this information
like linear acceleration, the devices orientation and magnetic north.

In order to make the movement detection realtime capable, it has to work with low
latency and as an online algorithm. Furthermore, the memory consumption should
be low or at least limited. The online algorithm should be able to react to changes
and be adaptive as well. Furthermore, the method should be computationally cheap
and configurable.

4.2.2 Magnetic Compass

The current step detection uses the magnetic field sensor to get the user’s heading
towards north. We can use the magnetic field sensor data directly for calculation of
the heading towards north, if the user holds the device in null-orientation.

The magnetic field sensor provide a vector with a direction towards north in intrinsic
coordinates, this means that the output is not restricted by attitude, but the given
values are relative to the device. In order to get the heading towards north, the
typical approach incorporates the accelerations in order to get a second fixed direc-
tion in world coordinates to calculate a rotation matrix vom instrinsic to extrinsic
coordinates. From this, we can extract the current bearing.

However, the reulsting heading usually has two possible solutions. The first one is
explicitly calculated and a second one, that will be in the opposite direction (flipped).
We provide further discussion on this ambiguity in Chapter B.

4.2. New Model for Step and Direction Detection 31

In order to get the correct heading, we need to include other data. As we do not
want any user interaction for this purpose, we can either try to fit the steps on the
map, which will lead at some point to an impossible choice for one of both solutions,
or by calculating the actual movement out of acceleration data.

As we want to follow the layer design, including map data here will not be a possible
solution. This leads to the fact that we have to calculate on the acceleration data
anyways. Moreover, evaluation shows, that a simple approach to integrate the ac-
celeration data to get a rough movement direction for selecting the correct heading
solution from the magnetic field sensor is not feasible.

4.2.3 Smartphone Carrying Locations - Survey

In order to concentrate on most typical device carrying locations, we decided to
collect information about the usage of smartphones. We asked people about their
typical carrying locations (depicted in Figure 4.2) for their smartphones. Further-
more, we asked about possible acceptable alternatives. The complete number of
participants is n = 103 with nf = 28 females. The participants’ ages span a range
of 18 to 45 years. This might be due to the fact, that our invitation to this survey
has only reached an audience at university. Nevertheless, we assume, that this cor-
responds to the nowadays smartphone user group and thus, we consider the sample
to be representative. Table A.1 and Table A.2 show the complete results for used
carrying and acceptable locations.

Rai et al. interviewed in [43] 30 employees in an office about typical placement
scenarios. They conclude, that most people carry their phone in their (front or rear)
trouser pocket or pouches at the belt. Women mostly carry their phone in their bag
and sometimes in a trouser pocket.

Our survey shows almost the same results. Most important is the observation that
only 17% of the asked participants never carry their phone in the trousers pocket
(front). Another popular location is the jacket pocket. About 45% of the participants
are at least sometimes using this location. Moreover, there is no difference in the
results for inner and outer jacket pocket. Although the bag or backpack are overall
more often used than the jacket pocket, the jacket pocket is more popular regarding
only the always-usage. Other alternatives are not considerably used.

The trends figured out from the used locations sustains for the question about ac-
ceptable locations. The most acceptable location is the trouser pocket with only
about 10% giving this location no chance. Close to this is the jacket pocket with a
definitely acceptance of about 41% whereas only 22% of the asked people will not
ever use this location. Both, rejection of the bag and backpack are at about 38%
while the rest splits up equally at a vote for definitely and maybe.

However, differences regarding the gender show in general, that women more often
use their bag and men prefer the trouser pocket. This observation also holds for the
acceptance of these locations.

32 4. Design

1: trouser pocket (front)
2: trouser pocket (back)
3: jacket pocket (outer)
4: jacket pocket (inner)
5: belt
6: arm
7: shirt pocket
8: backpack
9: bag

Figure 4.2 Survey Device Locations. We have put these possible locations for
carrying a smartphone to the vote in this survey.

0 10 20 30 40 50 60 70 80 90 100

trousers pocket

jacket pocket

bag

backpack

belt

100

100

100

100

100

83

44

36

35

0

63

4

18

6

0

answers [%]

always sometimes never

Figure 4.3 Survey Results - “Where do you carry your smartphone?”. The
blue marked area describes always, gray corresponds to sometimes and red to never.
The survey states, that most people carry their phone in their trousers pocket. The
bag, backpack or jacket pocket are the most used alternatives.

0 10 20 30 40 50 60 70 80 90 100

trousers pocket

jacket pocket

bag

backpack

belt

100

100

100

100

89

78

61

61

35

77

41

32

31

4

answers [%]

definitely maybe no chance

Figure 4.4 Survey Results - “What location would be acceptable to carry
your smartphone?”. The blue marked area describes definitely, gray corresponds
to maybe and red to no chance. The acceptance for the trouser and jacket pockt
is high - most people already use these locations. Moreover, bag and backpack are
possible alternatives.

4.2. New Model for Step and Direction Detection 33

4.2.4 First Approaches

As we want to determine steps and the corresponding heading independently from
the location of the device, we have to evaluate on an approach to do this task in a
reliable way. In this section, we will discuss several procedures which may not give
appropriate results.

4.2.4.1 Direct Rotated Linear Accelerations

A naive approach to extract the current devices movement would integrate over the
accelerations and calculate the corresponding heading. Evaluation shows that the
direct bearing extraction from the accelerations works well in some cases, but it is
not feasible in general as the average error on our recorded test data is erravg = 81.38◦

whereas the median is close to this value with errors of q.50 ≈ 80◦ and q.75 > 100◦.
These results are not feasible for a reliable heading estimation and will most probable
not be useful although a particle filter or some other map matching method may be
used for correction.

4.2.4.2 Magnetic Field and Accelerations

Kothari et al. [31] use a method for determining a heading from acceleration and
magnetic field sensor values which has the critical shortcoming, that their method
will yield two possible solutions for a heading as it is not possible to distinguish
between front and back - or in other words, the movement direction. This method
is also used in official Android sources. We provide detailed information on this
approach in Chapter B.

To determine the correct solutions from both, we have to consider more information.
This can either be acceleration data or a trial and error approach via a particle filter
which tries to match the movement onto given map data. As we want to rely on
our layered design, the second method is not feasible. However, using direct accel-
eration data is not feasible as well. We have seen, that both, average and median,
show an error near 90◦ which will not reliably enable the categorization of current
movement into front and back. Thus, we cannot reliably use direct acceleration data
to determine the correct heading estimation. We further discuss the topic flipping
in Section 6.2.2.

4.2.4.3 Sensor Fused Rotation Vector

With Application Programming Interface (API) level 9, Android introduces a new
virtual sensor which combines accelerometer, magnetic field and, depending on avail-
ability, gyroscope data. This virtual sensor already uses sophisticated filtering tech-
niques in order to get smoother results. The rotation sensor data’s representation are
quaternions which introduce more complex mathematics. However, we can calculate
a rotation matrix (see Section 2.2.4) and extract the rotation towards the positive
y-axis which is equal to the world’s heading towards north which intoduces also the
shortcoming of two possible solutions (see Section B.2).

34 4. Design

4.2.5 Final Model Decisions

As our first approaches do not succeed in reliably determining a heading estimation,
we have to use another more sophisticated model. The survey clearly shows to
concentrate on two different most popular locations - trouser and jacket pocket.
By analyzing the typical linear acceleration patterns (already rotated into the null-
orientation) at both locations, we can see a z-acceleration behavior which roughly
shows a combination of two different sine-functions, because of the user walking step
by step, leading to these acceleration changes in the z-direction. We can correlate
each local minima to a finished step placing the foot again and again onto the ground.
Depending on the location of the device, we can see a primary and an secondary
step (left and right leg) which will differ in amplitude.

By looking into recorded data from a test run, e.g., with the device in the user’s hand,
we can also find a similar pattern. Inspired by this, we conclude that it is possible
to create a generalized model out of this pattern for optimal bearing determination.
Figure 4.5 shows a complete overview of our step detection and bearing estimation
pipeline.

Model
- [i0, i1]

- variancez

- detectionZSmooth

- stepPostSmooth

Bearing Extraction

Step Detection

Sensor Fusion

Model Selection

accels

rotVecs

rotZAccels

rotZAccels

rotXYAccels
Model

Model

Steps

Steps with Bearing

Figure 4.5 Step Detection and Heading Estimation Pipeline. The Sensor
Fusion transforms linear accelerations via rotation vectors from intrinsic to extrinsic
coordinates. The model selection decides on the rotated z-accelerations on the model
to use. Besides valid variances for this model, it contains further information about
smoothing for step detection, the interval for bearing extraction and a postsmoothing
parameter for the actual heading estimations. Having information about which
model to use, the step detection smoothes the rotated z-accelerations and detects
local minima which represent a finished step. Afterwards, the bearing extraction
conducts from the model parameters, step events and the rotated linear x- and
y-accelerations the bearing which may finally get smoothed as well.

4.2. New Model for Step and Direction Detection 35

Start/End 1st Swing Phase 2nd Swing Phase Heel Touchdown

Hip:

Knee:

Foot:

Figure 4.6 Walking Motion - Different Phases. Arrows describe the movement
of the thigh and shank relative to the hip. The first phase describes the lifting of
the foot. Afterwards the second phase describes the acceleration of the leg into the
walking direction where this will reach a maximum until the foot is going down
towards the ground again. The complete step will finish by the third phase in which
the user places his foot down on the ground again.

4.2.5.1 Generalized Model

Introducing a generalized model with currently two different instances, one for
trouser pocket and one for jacket pocket, gives us the possibility to adapt the model
more precisely and to get more accurate results. Primarily, we have to find a simple
approach to distinguish when to apply which model. The variance in the linear
z-acceleration has proven to be useful (see Section 6.1) - other simple features like
pure attitude from the orientation values will typically not be sufficient.
Simply said, the movement in the trouser pocket will be greater than in the jacket
pocket and the variance will be greater as well. This also enables to switch the used
model ad hoc by just recalculating the variance and switching to the corresponding
model.

4.2.5.2 Model Design

By analyzing human walking motion, we can split each step into different phases as
shown in Figure 4.6. Let us assume that the start of the first phase will be the foot
on the ground. Now, the foot moves up to make the next step. After having lifted
the foot, the leg will accelerate into the walking direction which depicts the second
phase. The third phase describes the deacceleration of the leg and the new placing
of the foot again onto the ground. The idea is now to track the accelerations of the
second phase as it executes the largest displacement and use these values for bearing
calculation.

Step Detection. Minima in the z-acceleration depict a finished single step se-
quence. In order to segment the sensor data into such step segments, we first smooth
the data to filter for noise and higher frequencies. Then we calculate the first deriva-
tive of the z-accelerations and search for zero crossings (ZCs) to determine local
extrema, i.e., d/dz = 0. To ensure only considering local minima, a simple check of

36 4. Design

a sign change around such an extrema is sufficient. This approach corresponds to a
peak-step (3.2.3.2) detection.

After each detected step, we apply a step timeout depending on the determined
model. These values are currently fixed at 300ms for the jacket location and 600ms
for the trousers location. This will lead for the trousers location in detecting each
primary step, which describes the step of the leg where the phone is placed. How-
ever, these values are chosen by subjective observation while elaborating on the step
detection.

Bearing Extraction. We will extracted the bearing from the summed x- and
y-acceleration values of a certain interval in each step sequence. Thus, we define
relative positions inside the complete step length.
Formally, we have a series of tuples (t, x, y, z) ∈ R+×R3 defining linear acceleration
in the extrinsic representation (see Section 2.3). Our model defines the relative
boundaries for this interval: (i0, i1) ∈ [0, 1] × [0, 1] with i0 < i1, where we will use
this interval for actual bearing calculation.
Given step time-boundaries t0 < t1, the time-step length will be lt = t1 − t0. The
bearing calculation will use the following functions:

atan2(y, x) =



arctan(y/x) x > 0

arctan(y/x) + 180◦ y ≥ 0, x < 0

arctan(y/x)− 180◦ y < 0, x < 0

90◦ y > 0, x = 0

−90◦ y < 0, x = 0

undefined y = 0, x = 0

(4.1)

(xsum, ysum) =
∑

(t,x,y),
t0≤t≤t1

(x, y) (4.2)

Due to the fact, that the typical compass bearing defines clockwise north as 0◦

(depending on used coordinate system), we have to mirror it at the y-axis and
rotate it by 90◦:

bearing = 90◦ − atan2(ysum, xsum) (4.3)

4.2. New Model for Step and Direction Detection 37

4.2.6 Method to get Parameters

We have now defined a generalized model for step detection and bearing estimation.
To use this, we have to get parameter values for the model to work properly. In
general, the dimension for parameters is [0, 1] × [0, 1]. Usually, we have a bounded
samplerate for sensor data. The Samsung Galaxy Nexus for example gives roughly
100 samples per second. Furthermore, we can assume that one step will at most
take about 1,5 seconds. This leads here to 1500 samples for a complete step process,
where in theory we can select 15002 different combinations for the interval i = [i0, i1].

These combinations can be further restricted to those, where i0 < i1 holds, but
the resulting combinations remain by far unfeasible. Furthermore, all combinations
spanning only a small amount of data may be fitting better on given training data,
but will most likely be unstable for generalized usage. Thus, we restrict the possible
combinations to a discretized grid with step length 0.05.

Determining Model Parameters. In order to determine the model parame-
ters, we first search for suitable intervals in the z-acceleration variance for a correct
model decision. The testing data shows variances for jacket pocket inside a range of
variancezjacket ∈ [2, 24.3[and for the trouser pocket varianceztrousers ∈ [24.3, 100[.

Secondly, we have to determine the model parameters, i.e. the interval boundaries
for bearing extraction. For this purpose, we use least-squares optimization. The
target function sums up all squared differences of calculated bearings in contrast to
training-data’s groundtruth bearing. We will choose the interval with the least error
value for our algorithm as it shows best results.

Evaluation shows, that extending the interval to the possibility to contain a step
boundary, i.e., iextended ∈ [0, 2]× [0, 2], does not lead to better model parameters on
our training data.

4.2.6.1 Smoothing

It is also possible to smooth the acceleration values before the bearing calculation.
Evaluation shows, that pre-smoothing does not lead to better results on our training
data. But smoothing the resulting estimated bearings improves performance. Using
e.g. an average over more than the last two estimated headings may lead to a
noticeable latency. Moreover smoothing is not as easy in the domain of angles
R360 which does not simply enable to e.g. take the average in a common way:
avg(10◦, 350◦) ∈ R = 180◦, but avg(10◦, 350◦) ∈ R360 = 0◦.

38 4. Design

4.2.7 Non-Step updates

The current heading estimation obviously depends on step events. We already dis-
cussed the possibility to use the magnetic compass and decided on not using the
compass heading by itself. Although we extract the heading estimation from actual
accelerations, we can use the magnetic compass for a heading estimation whenever
there is no step event, i.e., there is no matching model meaning that there has not
been a step event.

However, we can also track the rotation vector and whether we have to apply flipping
by 180◦ to the calculated heading. Thus, we can also give heading information
without movement in the correct way independent of movement.

4.3 Navigation Interface

In order to get valuable feedback from the navigation, there has to be a suitable
interface. We will discuss the current interface (display). Due to the need of a new
interface as the display will not be viewable with the device in e.g. the jacket pocket,
we introduce new methods to give feedback (audio and vibration) which require a
method to determine what information to give.

4.3.1 Current Interface: Display

As FootPath assumes a usage while holding the device in your hand, the current
navigation interface is the device’s display. It displays the current map with the user
position, calculated path towards the destination and the currently assumed covered
path while navigating. This makes it easy for the user to get information about
upcoming route changes and recognizable objects on the way. Furthermore, the map
also provides information, e.g. about walls, doors and stairs, and shows background-
tile images from OpenStreetMap. For convenience, the interface supports zooming
and panning via well known gestures.

4.3.2 Overlay Graph and Interestpoints

The current map model is FootPath-internally represented as a graph. In more
detail, we split the data of the source into two groups. One group contains all wall-
related information as well as special areas such as stairs and elevators. The other
group contains all pedestrian-passable ways in a graph structure.

We perform path-determination for navigation from one room with an implemen-
tation of Dijkstra’s algorithm which calculates the shortest path between start and
destination. The algorithm then returns a list of all nodes on this path.

To follow the layered-design, the navigation-interface should be self-contained and
not depend on other modules of the FootPath project. We instantiate the navigation
module with information about the desired feedback-type, the map data as well as
the destination for navigation. This means, that currently the only interface between

4.3. Navigation Interface 39

D

D BC

BC

D

BC

Door

Bearing Change

Helper Node

Figure 4.7 Example - Actual Path and corresponding Overlay Graph.
Note that the overlay directly carries over the door-property of the actual node. An
additional calculation step adds bearing changes.

the path-matching-module and the navigation will be a single listener which gets
informed about a new estimated user location.

Consequently, the navigation is then responsible to check if the current path remains
correct or if we have to recalculate it. The module is capable of doing this, but the
current matching algorithms do not support an ad hoc path update for the time
being.

As the navigation will only get an estimation of the user’s position, there must be
an efficient method to correlate this position with the calculated path. To do so, we
decided to only model a path as a list of ActionNodes as an overlay graph. Figure 4.7
illustrates an example. Any efficient datastructure such as a quadtree then enables
a fast lookup for the nearest path-node towards a given location. To prevent the
algorithm to consider a wrong path node, we introduce a threshold for a maximum
distance. Exceeding this threshold results in regarding this path as useless and will
trigger a recalculation.

However, typical nodes may have a large distance. Thus, we introduce helper nodes
in between at path creation to keep this threshold small.

4.3.2.1 Interest Points

In order to enables feedback, like “pass 3 doors on your left”, we include a variety
of information into the overlay graph where the actual navigation feedback depends
on. More precisely, we add each “event” to the overlay graph nodes. Thus, after
having calculated a new path towards a destination, we precompute such Interest
Points. This information enables creation of actual navigation feedback.

We can collect some information directly from the original map nodes, e.g. doors
as they have a certain key-value pair in the source XML data. We calculate other
information like a bearing change or stairs each time we have calculated a new path
as this will not remain equal.

40 4. Design

We introduce precomputation filters to accomplish this task. These filters traverse
the path and insert Interest Points. The current set of filters allows easy ex-
tensions by adding new ones which may also involve the creating of new types of
Interest Points.

Current filters are the following:

• BearingChange. We track the current bearing from node to node over the
whole path. We consider a bearing change to happen whenever the bearing
differs by an amount greater than a certain threshold (45◦). Depending on
the previous bearing, the change will be categorized to either left or right.
Moreover, we provide the exact bearing-change in degrees.

• Doors. We model doors explicitly in the source map data which allows for an
easy addition of this information as an InterestPoint into the overlay graph.
This may also include a name if the door belongs to a certain room.

• OtherPossibleDirection. Some nodes of a passable way have a degree
greater than two. This means, that there is at least one more possible di-
rection - not belonging to the actual calculated path. We calculate the bearing
into such a direction and categorize it into left, right and none indicating the
bearing change for this direction.

• NearDoor. At some passages on the way through a building, there will not be
any special Interest Point like a bearing change or door for a longer distance.
To get valuable information anyway, the number of doors to pass (on the left
or right) may be of interest. If there are other possible directions at a certain
node, we will track the path into the other direction inside a given bearing
threshold as long as a maximum distance has not exceeded to check whether
there is a door in this direction. This ensures a direct line of sight without the
need to compute costly line intersections with walls etc.

• Stairs. Stairs are only modeled at the source graph edges. Thus, if an adjacent
edge of a node is indicating stair, the node will get a corresponding Interest
Point.

• LevelChange. The source graph has level information for all nodes. We will
store level changes as an Interest Point. Important information here are the
floor levels and the direction up/down.

• Crossing. Each time when there are possible direction left and right, the
current node may be a crossing. To make sure this is a real crossing and there
are not only two rooms in both directions, we check if the path will be longer
than a certain length without a door in between.

• Entrance. The source map data introduces a specialized tag for building
entries. As these denote a good recognition value for humans, we search for
entries in the same way as in the NearDoor filter.

• OtherTag. To keep things open and to enable specialized information, we
introduce the possibility to define own tags at the nodes in the map data.
We add them in the Interest Point filtering step into the overlay. We allow
checking for these tags for presence or certain content later on.

4.3. Navigation Interface 41

area
a a

a

Figure 4.8 Modeling Building Areas.
Left: A polygonal area defined as a graphway.
Right: The area modeled indirect inside the passable way nodes where each Node
inside the area will get a reference for belonging to this area.

The presented filters are straight forward. Specialized building parts or objects are
more challenging, but usually have a remarkable recognition value like a glass door,
a well or some kind of exposed arts - or even a glass corridor. In general, we can
subdivide these things into building parts to pass through and recognizable objects.

Objects. One possibility is to model such objects via some other tag. We do so
by involving OtherTag Interest Points. They allow natural usage like other Interest
Points as they just might occur on a route. This solution fits well in the current
configuration, but needs some extra work at map creation time (obviously, such
nodes have to be connected to the passable way graph). In the future, it should be
considered to just add such objects as single non-connected nodes or areas and to
do some more sophisticated polygon-membership tests regarding walls etc. to get
automated connections to the passable way graph we are working on.

Building parts. We have to handle building parts, e.g. a classcorridor, differently.
Building parts span over a complete area, thus we cannot directly model them via
one single node. This means we have to represent them by an area. One way would
be to model them directly inside the OSM data like stairs as a graphway, or we
may include them inside the passable ways for walking. Setting a certain key-value
pair on each node of the walking way trough the area might be a valid solution.
Figure 4.8 shows both possibilities. Modeling areas will be more convenient at map
creation time, but also introduces the need of precomputation. Modeling directly
inside the nodes will not have this disadvantage, but obviously needs more work at
map creation. Moreover the direct modeling also makes distinction of several areas
at the same time more complicated.

Besides these building part areas, they may be objects to pass in a“via”relation. The
prominent example of doors has already been considered directly. However, there
may be countless other scenarios which may be modeled directly with a certain tag
inside a node like for objects.

42 4. Design

4.3.3 Alternative Interfaces

The current display (see Section 2.5.4) will not be useful as a navigation interface in
our scenario where we do not want to carry the device in our hands. Thus, we have
to use a medium other than a display (optical). Moreover, other media will make
the navigation useful to handicapped people like blind or deaf persons.

Todays smartphones offer other media to provide user feedback. For example, we
can use audio, vibration or a combination of both as a feedback channel.

4.3.3.1 Audio

There are different methods to use audio for giving feedback (see Section 3.3.2).
However, speech synthesis is available in a variety of languages. We can just use
synthesis functionalities as a black box for audio-output of arbitrary text. There
remain two questions - what information do we want to give to the user and when.

In general, the amount of information to give, should be very limited. Because of
limited short term memory of the user, he will not keep all information - or will at
least not be capable to extract the relevant information if the amount of data is too
high [48]. This leads to a fundamental guideline to only give feedback in cases where
there is some valuable event (Interest Point) on the current upcoming path in a range
of less than about 15m. Moreover, a single short sentence with an additional rough
distance estimation encoded e.g. into words (e.g. a mapping function distToText :
R+ → {now, soon, later, ∅}) should encapsulate this information. There may be
cases where multiple events occur right after each other like a bearing change after
passing a door. In such cases, we can aggregate this information for feedback in
order to not surprise the user with a new command right after the previous one just
happened.

However, giving the user all available information is not feasible, as the amount is
often too high and most of the information is currently unimportant. The solution
to face this, is to give static priorities to events in conjunction with their current
distance. This means, that we can ignore all events with less priority, if there is
an event with a higher priority. E.g., if the current path contains stairs and a level
change in the upcoming next 15m, the information of bearing changes on the stairs is
not an important information. Instead a simple command to just go up-/downstairs
to a certain other level will be appropriate.

4.3.3.2 Vibration

The vibration feedback is very limited. Primarily, the amount of possible encoded
information into vibration is small. A morse-code encoding would be a valid method,
but on the one hand, the user must know such a language by heart and on the other
hand, vibration has a high impact on the step detection (i.e. acceleration behavior
of the device). Although this vibration pattern may be filtered out by the step
detection, we conclude that this will usually not be feasible.

Thus, we have to concentrate on a small amount of short and different well distin-
guishable vibration patterns to indicate most important information like an error or

4.3. Navigation Interface 43

step treshold time
0% 25% 50% 75% 100%

turn left

turn right

error

Figure 4.9 Example Set of Vibration-Feedback Patterns. The colored boxes
depict the periods, where the vibration is turned on. In order to avoid influences on
the step detection, we limit these sequences to the step-detection threshold time.

bearing change towards left or right. Usually, whenever a new position estimation is
available, an algorithm will check for the need of giving feedback, i.e. in Pedestrian
Dead Reckoning (PDR) soon after a new detected step event. To avoid influences
on the step detection, we have to restrict the total vibration pattern length to the
step-detection threshold. Figure 4.9 shows a possible set of patterns.

4.3.4 Metric Linear Temporal Logic

Our navigation module provides an overlay graph containing Interest Point informa-
tion and returns the user’s current position on this graph at each location update
from the matching algorithm. For feedback creation, we have to evaluate the current
scenario out of this graph starting at the given user position. However, this may be
a complex task. In order to allow for easy scenario determination, we introduce a
special logic, Metric Linear Temporal Logic (MLTL).

Definition 1. Paths. A path π describes a finite sequence of elements π = v0 . . . vn−1
and a set of atomic propositions AP which allow evaluation for each element. We
define the language of such an element L(v) as the set of all propositions p ∈ AP ,
where p(v) holds. Furthermore, we denote the length of the path as |π| = n [18].

Definition 2. LTL Syntax. Given a set AP of atomic propositions, Linear Temporal
Logic (LTL) has the following abstract syntax, where a ∈ AP [55]:

ϕ ::= a | (ϕ ∧ ϕ) | (¬ϕ) | (X ϕ) | (ϕ U ϕ).

Definition 3. LTL Semantics. We define the semantics of LTL by the satisfactional
relation |=LTL (short |=) which evaluates LTL formulas in the context of paths as
follows [55]:

π |= a iff a ∈ L(π0)
π |= ϕ1 ∧ ϕ2 iff π |= ϕ1 and π |= ϕ2

π |= ¬ϕ iff π |=/ ϕ
π |= X ϕ iff π1 |= ϕ
π |= ϕ1 U ϕ2 iff ∃j ≥ 0 : πj |= ϕ2 ∧ ∀0 ≤ i ≤ j : πi |= ϕ1.

44 4. Design

Lemma 4.3.1. Additional Logic Operators. With the given syntax of LTL, we define
new operators with the following semantics:

π |= ϕ1 ∨ ϕ2 iff ¬(¬ϕ1 ∧ ¬ϕ2)
π |= ϕ1 → ϕ2 iff ¬ϕ1 ∨ ϕ2

π |= true iff (¬ϕ ∨ ϕ) ∧ |π| > 0, where ϕ ∈ AP
π |= false iff ¬true
π |= F ϕ iff true U ϕ
π |= G ϕ iff ¬F ¬ϕ.

Definition 4. Metric LTL. MLTL is a superset of LTL. We will extend a path π by
a metric-function d : element→ [0,∞[where its values define an ordered sequence,
i.e. vi, vj ∈ π, i < j with d(vi) ≤ d(vj). Furthermore, we will extend the logical
operator U inductively by a metric-interval [k1, k2] with k1, k2 ∈ [0,∞[∧k1 ≤ k2 by
the following definition [55]:

π |= ϕ1 U [k1,k2] ϕ2

iff π |=


ϕ1 U ϕ2, for [k1, k2] = [0,∞)

ϕ2, for [k1, k2] = [0, 0]

ϕ1 ∧ X (ϕ1 U [k1−d,k2−d] ϕ2) for k1 > 0, where d = dist(X π)

ϕ2 ∨ (ϕ1 ∧ X (ϕ1 U [0,k2−d] ϕ2)) for k1 = 0, k2 > 0, where d = dist(X π)

.

Definition 5. Metric Finally and Globally. We will extend the operators G and F
by a metric interval as well. Their definition is the following:

π |= F [k1,k2] ϕ iff true U [k1,k2] ϕ

π |= G [k1,k2] ϕ iff ¬F [k1,k2] ¬ϕ.

Figure 4.10 depicts some simple examples on evaluation of MLTL formulas. We
provide more examples in Section C.

4.3.4.1 From Overlay-Graph-Paths to MLTL-ready Paths

It is important to determine in exactly what special scenario a user currently is
and how to guide him best through the building with natural and well-understood
descriptions and commands. In comparison to the vibration feedback, the audio
interface is well suited to give extended information. The amount of information
which can be encoded into vibration-patterns is restricted and not suitable to give
detailed feedback, whereas a single sentence via audio may contain sophisticated
navigation hints.

The user wants to get aggregated, accurate, useful information. Moreover, it is
desirable giving only the most important navigation hints over a short period of
time. As this is a whole new research topic for e.g. psychologists, we will not focus
on “good” rules here, but we introduce the MLTL to enable people without profound
java-programming skills to build rules for user feedback. The logic may introduce
initial hurdles, but as it is very domain-specific, it aims directly towards the target
of determining the user’s current scenario.

4.3. Navigation Interface 45

The introduced InterestPoints are straight-forward and easy to understand. To let
users evaluate the upcoming remaining path for navigation in a simple way, we show
how the MLTL concept matches our requirements.

MLTL to Paths. To make use of MLTL formulas to evaluate real-world paths,
we will reduce the real-world paths to those being usable with our logic. As this
reduction is straight forward, we will only explain the mappings.

A real-world path consists of a finite sequence of nodes Π = V0 . . . Vn−1 where V is of
type ActionNode. Each of these nodes has a set of type InterestPoint I which may
be empty. Furthermore, each node has real world coordinates (Latitude, Longitude,
Building level) which enable a distance measure. For using them in our logic, we
use the same nodes as a path π = v0 . . . vn−1 and a set of atomic propositions for
all possible Interest Points AP = {NearDoor, BearingChange, LevelChange, Door,
Stairs, . . .} which evaluate for each node Vm if a corresponding InterestPoint i is
present in its set. We define the metric for a certain node vm as follows: d(πm =
v0, . . . , vm) =

∑m
i=0 geoDistance(vi, vi+1) which represents the geographic distance

for the complete path to the node vm if the nodes are on the same level.

Whenever a path contains level changes, this metric will only be an approximate
measure as the nodes are not on a plane. However, typical paths through buildings
solely contain level changes and the occurrence of a level change (via stairs, elevators
or ladders) will be more remarkable than an exact distance measure for navigation
purposes. Moreover, the modeled map only gives level information which makes
it impossible to give an exact measure. Although it would be possible to give a
better estimation, we simply ignore this case. Subsequent nodes with the same
latitude/longitude coordinate on different levels have a distance of zero in terms of
our metric.

Usually, evaluation of such rules will follow some priority and the whole scenario-
determination chain will abort at some point. It is possible to exploit this fact to
exclude multiple scenarios for the rules with a lower-priority or to introduce hierar-
chical rules. Furthermore, knowing the exact evaluation implementation enables to
create equivalent formulas which will be processed faster.

Abstract information. In most cases, it is not enough to determine the current
abstract scenario. The InterestPoints as such give abstract information e.g. of
a bearing change, but do not specify directly into which direction. The Interest
Point entities contain detailed specifications. Therefore, we decided to give optional
reference labels for atomic propositions enabling efficient access afterwards. This
also includes the distance of a matching Interest Point.

46 4. Design

dist 0 1 2 3 4 5 6

F a

G a

X a

a U b

F [2,5] a

G [2,5] a

a U [2,6] b

a U [2,6] b

a

a

a

a

a

a

a

a

a

a

a

a,b

a

a

b

a

a

b

Figure 4.10 Example (M)LTL Path Evaluations. All formulas get evaluated
to true here.

4.4. Summary 47

4.4 Summary

In this chapter, we have presented our main design decisions. The main part consists
of a new heading estimation technique which enables the walking-direction determi-
nation at new carrying positions, i.e. non hand-held, of the device (4.2). We round
this up by a new navigation interface as the current one using the display is not
usable for these new locations (4.3).

We discuss different possibilities for heading estimation in general which have not
always succeeded to be reliable in our evaluation (4.2.4). For this reason, we deduct
from our survey about smartphone carrying locations, that the trousers and jacket
pocket are most popular locations (4.2.3). We introduce a new general heading
estimation model which bases on typical walking behavior patterns (4.2.5.1). Fur-
thermore, we show how to distinguish between both locations by variance in z-
Acceleration (4.2.5.2) and how to get concrete model parameters via optimization
on collected training data (4.2.6). As this approach relies on movement of the user,
we further introduce a method for determining the heading while not moving in
conjunction with the new heading-estimation (4.2.7).

Due to the need of a new navigation interface, we present a framework for path-
modeling and an efficient datastructure for this purpose (4.3.2). For giving valuable
feedback, e.g. via vibration or audio, we enable non-skilled programmers creating
feedback rules with a logic, MLTL, making the current user’s scenario determination
easier (4.3.4).

48 4. Design

5
Implementation

We have implemented the new step detection and bearing extraction in two different
phases. At first, we collected sensor data of different persons and analyzed them
in MATLAB afterwards. Furthermore, we tested a prototype step detection and
heading estimation. We ported the best results regarding evaluation in terms of
total error to Java for integration into FootPath.

As step detection and heading estimation is not the only module of this work, we
set up a navigation framework for different interfaces (textual, audio and vibration).

5.1 MATLAB

MATLAB in general gives good opportunities for rapid prototyping for any data-
related application in a numerical sense as it provides an extensive API for sev-
eral functionalities. MATLAB is highly specialized for computations with matrices.
Moreover, it provides easy to use methods for visualizing results [4].

Each run of sensor collection contains information of several internal sensors. These
are the accelerations, gyroscope, linear accelerations, magnetic field, GPS (latitude,
longitude, bearing and accuracy) and air pressure. We combine these different cate-
gories in a single wrapping object. Having the sensor information, we deduct accel-
eration and magnetic field values in extrinsic coordinates using the rotation vectors.

All data series allow direct access on values of a certain time interval and sampling
rate for convenience. Furthermore, we have employed a module for simple filter-
ing operations with different kernels like gauss, binomial, average, integration and
derivation, whereas these kernels introduce a parameter for width or order.

Moreover, all different kinds of sensor data allow access to specific properties like
magnitude for acceleration, distance between two series of bearings, rotation matrices
for rotation vectors, azimuth for geomagnetic data (heading towards north) and
characteristic statistical numbers for calculated errors data-series.

50 5. Implementation

Besides the implementations of zero-crossing (and autocorrelated) step detection and
heading estimation by our model, we also introduce a simple method for optimizing
model parameters which takes possible model parameters, calculates results and uses
squared errors towards predefined ground truth as its metric.

5.2 From Offline to Online

The algorithms in MATLAB follow an offline approach. This means, that complete
sensor data information is available even before runtime. In contrast to this, an
online approach will get subsequent new sensor data over time. There are fine,
but differences at both approaches. As the offline method has knowledge about the
whole data, e.g. we can compute the variance of the complete data series. The online
method will only have local knowledge from the past until the current timestamp of
the data.

The conversion of the MATLAB offline algorithms into online Java algorithms is not
a trivial task. We have to consider the mentioned drawbacks of online algorithms
precisely.

Instead of calculating filters etc. directly on the whole data, the online sensor fusion
algorithm runs periodically (currently each 1.5 seconds) on collected sensor data,
whereas we store new sensor values whenever they are available.

We have seen, that the algorithm works with several fused data series. Thus, we
separate the fusion steps into different modules. E.g. at first we calculate rotated
sensor values to get their extrinsic representation. Afterwards, we extract the z-
accelerations as we use them for step detection. At last, we do the step detection
and heading estimation.

5.2.1 Time Bounds

It is not feasible to store all sensor values since the start of the algorithm. This
means, that we have to introduce time bounds. Due to the nature of our model, we
only need a certain interval of past sensor values. A time of roughly three times the
periodicity has proven to be enough.

To enforce the time bounds, each time the different algorithm-modules run, we do
time bounding which deletes all values being old enough. This may also introduce
problems with the Java runtime. Due to automatic garbage collection, each time
we delete all references to an object, the garbage collector deletes it from memory
at some time introducing overhead. Currently we do not see the need for reusing
certain sensor-value wrapping object to prevent garbage collection, but it would
most probable result in less overhead.

5.3. FIR vs. Convolution 51

x(n)

y(n)

b0 b1 b2 bn

∑ ∑ ∑

z−1 z−1 z−1

. . .

Figure 5.1 Finite Impulse Response (FIR) Filter. Usually, we can express
such filters by a single kernel vector defining the coefficients bi.

5.2.2 Limited Knowledge

We have already introduced the restriction of limited knowledge. This is a disad-
vantage in general, but in this case, in terms of step detection, it is not. Typically,
the training data only shows values while the user is walking. Due to the global
distinction of models by variance, we assume that the user is walking all time. Of
course, our training data does not have other behavior, but it may be the case in
practical examples. Due to this limited knowledge, calculating the current variance
in a resulting sliding windows approach gives two advantages - at first, if the user
stops walking, the variance will decrease rapidly such that this model distinction
value will give the information of the user’s state “stopped”. Secondly, we can adapt
naturally and automatically to model changes - and thus, device placement changes.

5.3 FIR vs. Convolution

In MATLAB we use convolution by a kernel H. The discretized convolution of such
a kernel with a certain function s(t) implement the following equations:

(s ◦ h)(n) =
∞∑

m=−∞

s(n−m) · h(m). (5.1)

We can simplify this due to the fact of having a finite kernel:

(s ◦ h)(n) =

|H|/2∑
m=−|H|/2

s(n−m) · h(m). (5.2)

This means, that for all possible values of s(t), we calculate a weighted sum in an
interval of |H| values around each t with the kernel’s factors.

As we have an online algorithm, we cannot do this for the newest values as data
is missing (we have a causal signal). Thus, we can change the convolution into the
following method which describes a Finite Impule Response (FIR) filter shown in
Figure 5.1:

(̃s ◦ h)(n) =

|H|−1∑
m=0

s(n−m) · h(m). (5.3)

52 5. Implementation

To transform this FIR result into the convolution, we have to delay the timestamps
by exactly |H|/2:

(s ◦ h)(n) = (̃s ◦ h)(n+ |H|/2). (5.4)

Note, that both, the FIR and convolution approaches here are discrete variants. This
generally means, that the filtering works on all data series, but explicitly disregards
any time information. This is no problem as we can correlate the data entries to
a time - but problems arise, if the sampling intervals of these values change or are
not equidistant. This leads to the main restriction of equally sampled values in this
context.

5.4 Actiongraph

The actiongraph holds current routing information and supports giving navigation
instructions. Thus, each time we set up a new route, we create a separate action
graph as well. To do so, we take the route’s nodes from the map and then traverse
them with filters which calculate Interest Point information.

Due to our layered design, the navigation module must work independently. As
seen, this module will only receive new current estimated user positions. In order
to get the corresponding position on the route easily, we determine the nearest node
from our actiongraph. To do so in an efficient manner, we do not search along
nearest distance towards edges, but only nodes of the actiongraph which discretize
edges. For this reason, we introduce extra nodes along each edge which in turn will
represent this edge. The datastructure backing up the graph is a quadtree. This
quadtree consists of recursively defined quads which in sum are responsible for a
complete area. Each quad contains a list of nodes with certain coordinates.
We will use a latitude/longitude to 2D-pixel mapping function (which are usually
used to transform a geo-location into pixel values for the map display) as a metric
for the quadtree x- and y-coordinate.

By now, we can only distinguish between different geographic locations, but have
not considered multiple possible building levels. For this reason, we introduce such
a quadtree for each building level.

5.5 MLTL

We represent the Metric Linear Temporal Logic (MLTL) logic as proposition objects
each containing a method to evaluate a certain path. In order to keep track of the
current metric (distance), we give the current distance value right into this evaluation
method.

In general, the propositions separate into primitive propositions for Interest Point
checks and language propositions defining the operators like logical and, until and
finally. According to the theory in Section 4.3.4, we define the operators using the
implemented until.

5.6. Class Overview 53

Moreover, we store important backreferences to certain Interest Points into a hashmap
of matching nodes. This means, that we store a reference in a hashmap by user spec-
ified keys to an Interest Point whenever we find a holding primitive proposition for
his point. Furthermore, if the user does not specify a key, we automatically use a
random UUID.

For evaluation, we traverse each node on the given path in a recursive descend
approach.

MLTL Overhead. The abstracted logic introduces computational overhead. Naive
approaches will define a recursive-descend evaluation introducing exponential com-
plexity. But we can assume that the targeted instances in this setup will remain
small, as the density of nodes on a path is on average restricted and evaluation
abort at typical restricted distances of only few meters, e.g. 15m, because anything
beyond does not contribute to reasonable feedback.

5.6 Class Overview

To give an overview on the complete implementation, we will present some simplified
class diagrams and give information about interaction and functionalities. The major
components are orientation determination and navigation, where the orientation gets
its own external library.

5.6.1 Orientation

Figure 5.2 shows a simplified class diagram. The main single external interface is the
AdvStepEventListener. It provides a method to notify new detected step events
as well as listener functionalities for sensor data given by the Android system.

5.6.1.1 Data Collections

A data collection stores either raw sensor data or fused data. As most sensors typi-
cally return multiple values at a time, these values get wrapped into an extra object.
For efficient access, we store references to these wrapping objects twice. On the one
hand, we provide a list of these values sorted by timestamp. On the other hand, we
give sophisticated access on the sensor-data by timestamp via a TreeMap. Although
typical different sensor data types seem (for some internal Android or hardware rea-
son) to have the same timestamp for each time they arrive in the Android system,
we cannot ensure this fact which is the main reason for the mentioned mapping
approach.

54 5. Implementation

5.6.1.2 Datamanager

We store all data collections at the datamanager. To distinguish between data
series, they simply get a unique name. The manager provides methods to add
new sensor data and to get certain data. Moreover, the manager object also gives
the opportunity to trigger sensor fusion techniques and do time bounding on the
contained data collections.

5.6.1.3 Sensor Fusion

Each sensor fusion technique will have its own identifier for the datamanager as well.
In order to do sensor fusion in a hierarchical manner, each sensor fusion instance
provides a priority which enables to define the sequence in which the fusion takes
place. E.g. at very first we want to get an extrinsic representation of our data series
which means, that this transformation will get the highest priority, whereas the step
detection depends on this fusioned data and thus, gets a lower priority.

In general, the datamanager has the responsibility to trigger the different fusion
instances and results in the execution of a calculation method. Here, we do the
main computation which may be simple rotation of acceleration data by the rotation
vectors - or even more complicated step detection. The most critical job here is to
keep track of already evaluated information. For this reason, we store the last
processed timestamp. However, we have to do further processing and filtering of
data with care. The FIR-simulated convolution needs to get some data before the
actual timestamp we want to compute as the timestamps get delayed.

5.6.1.4 Step Detection

To get a better impression of how such a fusion process works, we will explain the
step detection in more detail.

At first, we demand all used data collections from the datamanager - these are
the steps and extrinsic linear z-accelerations (and later on the extrinsic linear ac-
celerations). To determine which model we will have to use, the variance of the
z-acceleration series gets calculated and compared against available model parame-
ters. If there is no matching model, we are finished - most likely, the variance was
too small which leads to the assumption that there has not been any step event.
Otherwise, we smooth the accelerations by the defined width of the matching model
in order to detect zero crossings. Remember: We have to define the bounds for the
smoothed accelerations carefully. Our implementation of the zero crossing utility al-
ready allows us to set a threshold after each crossing. The actual calculation of the
zero crossings (ZCs) is simply done by applying a first derivative kernel on the data
and afterwards analyzing all zero entries and sign changes to just get local minima.

Now that we have all assumed step events, we will continue with the heading esti-
mation. The given model already defines parameters about the relative interval of
important acceleration for bearing extraction. Iterating through all step events al-
lows summing up linear x- and y-accelerations within each of these relative intervals
and then calculating the actual estimated bearing towards north.

5.6. Class Overview 55

Note, that we decided to not keep track of different smoothed linear z-accelerations
series as the sampling rate may change. Moreover, just smoothing needed accelera-
tion values on demand may save some computation time, especially as there might
be a lot different models in the future.

5.6.1.5 Non-Step Updates

In order to get a heading estimation while not moving, i.e. without step events, we
cannot use acceleration data, as there is no acceleration while standing still or just
rotating. For this reason, we have to use the magnetic field sensor or rotation vector
for a heading estimation. Due to simplicity and less overhead, we decided to use
the rotation vector directly as the magnetic compass combined with the acceleration
data would introduce the need for tracking more sensor data. Moreover, the heading
from the rotation vector provides similar results.

In order to not complicate our design and eliminate the need to introduce some
other “non-step” event, we decided to give the possibility to poll the current heading
estimation from the rotation vector. This estimation will be smoothed by a pa-
rameter which specifies a timespan for calculating a current average. Therefore, it
is up to the navigation module to get this additional information and using some
kind of timeout mechanism in order to detect periods where the user is not moving.
Whenever the user stops walking, it is up to the navigation module to give feedback
on whether the user has to turn into a certain direction or not.

56 5. Implementation

or
ie
nt
at
io
n

da
ta

se
ns
or
fu
si
on

D
at

am
an

ag
er

«i
nt
er
fa
ce
»

D
at

aC
ol

le
ct

io
n

D
at

aC
ol

le
ct

io
n
Im

p
l

+
va
ri
an

ce
(w

in
:l
on

g)
:fl

oa
t

M
yS

en
so

rV
al

u
e

Se
ns

or
Fu

si
on

Im
pl

«i
nt
er
fa
ce
»

S
en

so
rF

u
si

on

+
do

C
al
c(
)
:v

oi
d

S
te

p
D

et
ec

ti
on

R
ot

at
ed

L
in

A
cc

el
s

R
ot

at
ed

L
in

A
cc

el
Z

M
od

el
s

+
ge
tM

od
el
(v
ar

:fl
oa

t)
:M

od
el

M
od

el

-
va
rF
ro
m

:fl
oa

t
-
va
rT

o
:fl

oa
t

-
sm

oo
th
Se

cs
:fl

oa
t

-
st
ep

T
hr
es
h
:fl

oa
t

-
be

ar
in
gL

ow
er
B
ou

nd
:fl

oa
t

-
be

ar
in
gU

pp
er
B
ou

nd
:fl

oa
t

-
in
te
rp
ol
at
eS

te
ps

:i
nt

«i
nt
er
fa
ce
»

A
d
vS

te
p
E
ve

nt
L
is

te
n
er

+
no

ti
fy
N
ew

St
ep

(t
:l
on

g,
be

ar
in
g,

fr
eq
,p

ea
k
:fl

oa
t,

m
:M

od
el
)
:v

oi
d

«i
nt
er
fa
ce
»

S
en

so
rE

ve
nt

L
is

te
n
er

Figure 5.2 Simplified Class Diagram - Orientation Determination. It con-
sists of two main packages - data and sensor fusion. The data package defines used
datastructures for efficient access to stored sensor data. The sensor fusion package
has a modular design to create new calculated data series out of preliminary calcu-
lated or basic ones. It is easily possible to integrate this library into other projects
by implementing the step listener and registering at the step detection. To gather
sensor information, we also use the step listener.

5.6. Class Overview 57

5.6.2 Navigation

The user navigation consists three parts. In general, we display the current user’s
position and map whenever we are navigating. Moreover, we have implemented the
possibility to select another additional type of active feedback - which is textual,
audio or vibration. Figure 5.3 shows a schematic overview.

Matching Algorithm

Feedback Module

Feedback Calculator

Vibration Audio Text

User

new Position(Lat/Lon, Level)

new Position(actiongraph node)

Feedback

Figure 5.3 Navigation Feedback Overview. Each time the matching algorithm
returns a new estimated position, the feedback module maps this position (given as
geographic coordinates latitude/longitude and building-level) onto the corresponding
actiongraph node. Afterwards we process this position in the selected feedback
calculator which determines the current user’s scenario and gives desired output.

In order to give additional feedback, a feedback module keeps track of the current
route and is responsible for creating the actiongraph with containing Interest Points.
Depending on the selected feedback type, we instantiate a specialized module which
calculates and gives output.

Each time the matching algorithm returns a new estimated user position, we trigger
the navigation module. We match the updated position onto the current route via
searching inside the quadtree. If the nearest actiongraph node exceeds a predefined
maximum distance, i.e. the location cannot be found, we calculate a new route
from the nearest actual map walking-way node. Otherwise, we hand over the new
position to the actual feedback-output module which calculates the current apparent
scenario.

Here, we can specify when to give feedback (including timing thresholds to not give a
command at every step). We use our MLTL approach on the resulting path from the
current estimated user location towards the destination for scenario determination.

For easy integration of new feedback types, we have defined an interface Feedback-

Strategy and provide an abstract implementation for convenience. Depending on
the user’s selection, we use a concrete implementation of the feedback strategy to
give actual feedback - which currently may be either vibration or an aggregated
text/audio variant.

58 5. Implementation

5.7 Insidious Bugs and Unittests

During implementation, it is important to get good quality source code. We measure
quality in terms of correct functionality, readability and performance. In order to
fulfill these general requirements, the we have to implement our application with
care.

Readability is the easiest measure to fulfill - common Integrated Development Envi-
ronment (IDE)’s provide methods for automatic code cleanup by configurable coding
conventions. Moreover, useful comments and hints are important to enable others to
understand how a problem is solved. Refactoring tools enable fast renaming of e.g.
methods and classes. In addition, object oriented design patterns should be used
whenever appropriate as typical software engineers know them by heart. Further-
more, they often provide elegant out of the box solutions for typically encountered
problems.

The most crucial quality measurement is the correct functionality and performance.
As long as a program does not fulfill its functional requirements and shows logical
bugs, there is no need to speed things up. However, we can avoid performance traps
right at the beginning. An example to this is our DataCollection implementa-
tion. It is supposed to hold sensor data and enable random access by timestamps.
Furthermore, we need sequential access on subsequent data items. We have imple-
mented this requirement by storing data items in a List while also storing each data
item with its corresponding timestamp in a TreeMap which allows efficient random
access.

We primarily focused on functionality first. Performance issues became interesting
not before we ran into trouble with simple implementation. Many bugs arise because
of spending far too much time on speeding things up, although a simpler solution
would be adequate.

5.7.1 Unittests

However, we ensure functional correctness by using unittests [3] excessively. Unit
tests in general have the advantage, that they typically test only small parts of a
program and if such tests are managed correctly, they provide direct feedback on the
correctness of the application. In fact, it is recommended to create tests defining and
ensuring application behavior before writing any line of code of the actual programm.

Besides unittest for each single method we use at our Java implementation which
can usually be tested without any further contex, we also use a more complicated
unittest environment to load stored sensor data (cache it) and to process it inside the
FootPath environment. This allows us to rerun a test under the same conditions and
with the same sensor data again and again. Furhtermore, debugging via step-by-step
code execution becomes feasible.

5.7. Insidious Bugs and Unittests 59

5.7.2 Challenging Bugs

We have spent most time at verifying results. On the on hand, we have the MATLAB
implementation where we can fastly verify the results e.g. by plotting data series.
On the other hand, we have the Android implementation which has to be executed
directly on an Android device. Although our JUnit framework allow us to reproduce
different test scenarios, it is hard to check the processed sensor data after each
important calculation step. Furthermore, due to different implementations, results
from our Android implementation do not exactly match those from our MATLAB
implementation. Thus, we exported calculated results from the Java implementation
in order to verify the results via MATLAB visualization techniques.

The most prominent bugs have been found in our actual step detection and heading
estimation module. Creating an online algorithm is challenging as we have to keep
track of the exact timestamps which data has already been processed and which
not. Moreover, smoothing with our FIR-implementation works, but in order to get
results as expected when having the complete data available. We cannot just start
filtering the first unprocessed data item with a new filtering instance, but have to
advance preliminarily processed data items for creating the correct context.

60 5. Implementation

6
Evaluation

In this chapter, we will discuss the evaluation results of our implemented methods.
For evaluation purposes and model fitting, we collected training data of 15 different
participants. The training data consists of 24 runs with the device in the trouser
pocket and 25 runs with the jacket pocket location. Moreover, the test runs split into
roughly two groups with each the right and left position. We performed all device-
related tests on a Samsung Galaxy Nexus (GT-I9250) smartphone. It provides all
mentioned typical MEMS sensors like accelerometer, gyroscope, magnetometer and
barometer. We use the maximum sampling rate, which is roughly 100Hz.

6.1 Device Carrying Location Estimation

In order to use the correct model, we presented a method for distinction via the
variance in linear rotated z-acceleration. Best results for separating between both
locations yields a threshold of variancezlinAccel = 24.3. Table D.1 shows a comparison
of the detected device locations against actual locations. However, we obtained these
results in an offline approach, i.e. using the complete dataset.

The results show, that our method determines the trousers pocket location well with
an error rate of 4.2%, whereas there are false positives at a rate of 12.0%. Taking a
look into these falsely categorized jacket pocket datasets shows, that the used feature
completely does not fit at all with corresponding variances at values of 31.22, 37.10
and 30.03. Moreover, the wrongly estimated location for the trousers pocket dataset
shows a variance of 18.57.

62 6. Evaluation

jacket
pocket

trousers
pocket

5

15

25

35

45

li
n
ea
r
z-
ac
ce
le
ra
ti
on

va
ri
an

ce
[m

/s
2
]

jacket
pocket

trousers
pocket

5

15

25

35

45

0

5

10

15

20

25

pe
rc

en
ta

ge
[%

]

Figure 6.1 Model Distinction by z-Acceleration Variance.
Left: Box plot of the linear z-acceleration variance of the modeled locations. We can
separate most of the datasets of the different locations by a single threshold. The
blue marked area depicts the valid cutting range of the optimal threshold. Note,
that the Whiskers denote minimum and maximum values here.
Right: A more detailed overview of the variance distribution shows the strong dis-
tinction for the trousers pocket location to variances below 29.

6.2. Evaluation on Collected Data 63

6.2 Evaluation on Collected Data

Sensor data output may be disturbed by the environment, i.e. the magnetic field
sensor reacts on iron bodies, electric currents or permanent magnets. Furthermore,
fused sensor data, that uses the magnetic field sensor, is affected as well. To avoid
this problem, we decided to collect training data not in a building, but outside.

We have saved all sensor data of interest, i.e. accelerometer, magnetic field sensor
and gyroscope, at each data-collection run. Furthermore we have also stored fused
data like linear acceleration and the rotation vector. Besides these inertial sensors,
we have also tracked Global Positioning System (GPS) coordinates and bearing
information. We have restricted the participants to follow a predefined path for
these runs in order to deduct a reliable ground truth out of static map data.

The evaluation will primarily rely on offline data calculated with our MATLAB
implementation. Furthermore, we give an overview of similar results with our Java
implementation of an online algorithm which is integrated into FootPath.

6.2.1 Heading Estimation Approchaes

In order to evaluate our new model, we use three other heading estimation ap-
proaches. In general, we use our presented peak step detection method (see Section
4.2.5.2).The heading estimation techniques try to evaluate an estimation for each
detected step out of the present sensor data which are acceleration, linear accel-
erations and the magnetic field, whereas we rotate the accelerations into extrinsic
coordinates by using the rotation vectors (see Section 2.3). We will present these
methods briefly:

Direct Accelerations. The Direct Accelerations approach integrates over the com-
plete current step time period the extrinsic x- and y-linear accelerations. We then
transform the resulting vector into a heading towards north via the atan2 function,
whereas we further have to mirror and rotate this angle (see Section 4.2.5.2).

Rotation Vector. We have seen, that the android system provides a fused virtual
sensor called Rotation Vector (see Section 2.2.4). We use these values to transform
all intrinsic coordinates to extrinsic coordinates via calculating a rotation matrix
out of these values. However, we can directly extract a heading estimation towards
north out of this matrix.

The Rotation Vector approach calculates an average over a complete step time pe-
riod. For this reason, we calculate a heading estimation out of the rotation matrix
for each data entry inside the current step time period. To avoid error prone average
calculations directly on angles, we integrate over the resulting x- and y-components
and recalculate a final heading estimation. Note, that there is no need for a further
transformation as we already calculate on headings towards north.

New Jacket and New Trousers. The New Jacket approach defines our method,
but restricts it to only use the jacket model parameters regardless of the classification
of the dataset. The same hold for the New Trousers method, which restricts the usage
to the trousers model.

64 6. Evaluation

New Estimation. The New Estimation method will use our complete new head-
ing estimation approach. It will classify the current dataset by the feature already
introduced in Section 4.2.5.1 and evaluated in Section 6.1. Depending on this classi-
fication, it will use the specific model for heading estimation, i.e. either the trousers
or the jacket model.

6.2.2 Flipping

Due to the fact, that the usage of the Magnetic and Rotation Vector methods have
the problem of possibly flipped reults (see Section 4.2.4, Section 4.2.2 and Chapter
B), we have evaluated on different possibilities for flipping. This means, we have
calculated heading estimations on the complete data set with both approaches. Un-
der the assumption, that we know the actual heading, we flip the result if it has an
absolute difference greater than 90◦.

We give a comparison between different flipping references at both methods in Figure
D.1. The used references are Direct Accelerations, our New Estimation and the
known groundtruth of the data. For completeness, we also show results withhout
flipping.

However, by careful investigation of each dataset, we observe that the flipping will
only occur in rare cases in our collected sensor data. Generally, Direct Accelerations
do not yield better results than using no flipping. The usage of our New Estimation
method yields slightly better results than no flipping. We observe similar results
when using the groundtruth as a reference (which is only available in our test setup)
with the exception, that the resulting error is strictly bounded to a maximum of
90◦. In fact, flipping by New Estimation or ground truth will in most cases probably
result in an error-correction behavior.

The upper quantile of the non-flipped Rotation Vector is roughly 90◦ which in turn
leads to 25% flipped estimations. Although this huge amount of values gets flipped,
the overall error distribution changes its median only from q.50 ≈ 65◦ to q.50 ≈ 60◦.
The same pattern holds for the Magnetic approach.

Nevertheless, we decided to use flipping by the groundtruth which makes both meth-
ods more competitive and thus, we denote instances using the ground truth flipping
as Rotation Vector* and Magnetic*.

Further statistical data and a distinction between trousers and jacket data sets is
provides in Section D.2.

6.2.3 Smoothing

In order to further improve results, we have tested a different data smoothing ap-
proaches. On the one hand, we tested data pre-smoothing which uses the step detec-
tion on the unsmoothed data, but the actual heading estimation then uses smoothed
data. On the other hand, we tested post-smoothing of the bearing estimation results.

6.2. Evaluation on Collected Data 65

0 15 30 45 60 75 90 105 120 135 150 165 180
0

0.25

0.5

0.75

1

error [◦]

cu
m

ul
at

iv
e

pe
rc

en
ta

ge

postsmoothed New Estimation
postsmoothed Magnetic Field∗

postsmoothed Rotation Vector∗

postsmoothed Direct Accelerations
New Estimation
Magnetic Field∗

Rotation Vector∗

Direct Accelerations

Figure 6.2 Model Evaluation: Post-Smoothing. This figure depicts the error
distributions of the regarded heading estimation approaches with and without post-
smoothing.
In general, the simple post-smoothing improves results regardless of the used heading
estimation technique.

6.2.3.1 Pre-smoothing

In general, pre-smoothing will not yield better results. Pre-smoothing is discussed
in Section D.3.1.

6.2.3.2 Post-smoothing

The tested postsmoothing simply takes the average of each new estimated value with
the last estimation. We have tested this smoothing technique on our datasets and
present the results in Figure 6.2.

The post-smoothing results in better performance for all heading estimation tech-
niques. Our New Estimation approch shifts its median and upper quantile of its
absolute error distribution down by over 10◦. The Rotation Vector method also
improves its absolute error distribution by a rough average of 5◦. Moreover, we ob-
serve even better improvements at the Magnetic method, where the absolute error
distribution shifts down by up to 30◦. The most remarkable difference shows the
Direction Accelerations which changes from a uniform-like error-distribution to a
median of ≈ 45◦.

As the smoothing improves all results, we decided to use the post-smoothing for all
subsequent tests and evaluations.

66 6. Evaluation

6.2.4 Model Parameter Determination

We calculate the model parameters (see Section 4.2.5.2), i.e. the interval I = [i0, i1]
to use for heading estimation, using optimization. For this reason, we calculate
the total error for possible intervals at a certain discretization. We have chosen
the discretization to a steplength of 0.025 which introduces

∑40
i=0 i =

(
41
2

)
/2 pos-

sible intervals, whereas we restrict these to i0 < i1 leading to 820 combinations.
Assuming a normal step taking about 1s, we will have 100 samples with our used
smartphone (100Hz). The chosen optimization resolution then enables a distinction
of 2.5 samples which we regard as fine enough.

The actual optimization algorithm calculates the heading estimation on a given
traning data set with our new generalized model using each time the specialized
interval combination. While optimization, besides the total heading estimation error,
we also track the error variance among all tested datasets for this interval which is
a measure for the stability of this interval on the complete training data.

A final model decision may be a mixture of both measurements - the total error
and the variance. However, we have decided on the parameter values Itrousers =
[0.825, 0.975] and Ijacket = [0.525, 0.95], whereas they each did not provide the lowest
total error, but introduced an slightly higher error at a much lower variance measure.
In fact, the chosen trousers model instance has an average heading estimation error
about 5◦ over the instances with the least error value. Moreover, the jacket model
instance shows an average heading estimation error less than 2◦ over the least error
value.

We have visualized our optimization results for the trousers datasets in Figure 6.4
and for the jacket datasets in Figure 6.3. The trousers model shows different areas
of possible “good” model paramter combinations. The upper left region at I =
[0.25, 0.95] actually performs good in terms of average error and variance, but is
slightly worse at both measurements. The second big region of possible intervals
may be a result of secondary steps which also have influence of the primary leg (i.e.
the one, where the device is located).

However, we also present optimization results over the complete dataset leading
to a generic model for both locations in Figure D.12. Furthermore, we have also
investigated on the heading estimation with best combined model parameters and
our normal step detection method. The results are presented in Figure D.15.

6.2. Evaluation on Collected Data 67

0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

i0

i 1

3.4

3.6

3.8

4

4.2

av
g
lo
g
1
0

sq
ua

re
d

er
ro

r
pe

r
st

ep
[◦
]

0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

i0

i 1

1

2

3

4

·1012

va
ri

an
ce

of
sq

ua
re

d
er

ro
r
[◦
]

Figure 6.3 Model Parameter Determination: Jacket. This figure shows the
results of model optimization for the jacket testruns. Both graphics show all valid
model-intervals [i0, i1[which determine the range of values for the heading estimation
per step. Generally, darker quads relate to better results, whereas lighter quads relate
to worse results.
Left : Each quad encodes the average log10 squared error per step in degree into a
gray-value. We can see an area of “good” model parameters around i0 = [0.5, 0.7]
and i1 = [0.6, 1].
Right: Each quad depicts the average variance of the sum of squared errors over all
testruns. The results vary highly between subsequent possible discretized interval
values. However, we have chosen our final model parameter by taking both values
into account. We have marked the parameter combination with the white circle at
i0 = 0.525 and i1 = 0.95.
Note, that we have marked the optimal parameters with the white solid circle. The
dashed circle marks our parameters for the trousers model.

68 6. Evaluation

0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

i0

i 1

3.2

3.4

3.6

3.8

4

4.2

4.4

av
g
lo
g
1
0

sq
ua

re
d

er
ro

r
pe

r
st

ep
[◦
]

0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

i0

i 1

0.5

1

1.5

2

·1012

va
ri

an
ce

of
sq

ua
re

d
er

ro
r
[◦
]

Figure 6.4 Model Parameter Determination: Trousers. This figure shows
the results of model optimization for the trousers testruns. Both graphics show
all valid model-intervals [i0, i1[which determine the range of values for the heading
estimation per step. Generally, darker quads relate to better results, whereas lighter
quads relate to worse results.
Left : Each quad encodes the average log10 squared error per step in degree into a
gray-value. We can see two areas of “good” model parameters around i10 = 0.25 and
i11 = 0.95 and i20 = 0.8 and i21 = 0.9.
Right: Each quad depicts the average variance of the sum of squared errors over
all testruns. The results show higher variance at an area of i0 = [0.15, 0.4[and
i1 = [0.35, 0.65[. However, we have chosen our final model parameter by taking both
values into account. We have marked the parameter combination with the white
circle at i0 = 0.825 and i1 = 0.975.
Note, that we have marked the optimal parameters with the white solid circle. The
dashed circle marks our parameters for the jacket model.

6.2. Evaluation on Collected Data 69

6.2.5 Offline Approach

For the main evaluation we used our offline MATLAB implementation. We discuss
a comparison between the online and offline in Section 6.2.6. For evaluation we
calculated for a certain datasat (only trousers, only jacket or both) the steps and
subsequently the heading estimations for all different approaches. As we collected
the outside, we also have GPS data available and provide this as a reference.

6.2.5.1 Jacket Dataset

We show a general overview on the results for the jacket datasets as a boxplot
in Figure 6.5. Our evaluation on the jacket dataset shows, that both, the New
Estimation as well as the restricted New Jacket method perform well and provide
comparable results to the GPS reference. Note, that the outliers at the Global
Positioning System (GPS) dataset are a result of lag after a turn while collection
the data.

The restricted New Trousers model and Direct Accelerations show a similar error
distribution which is confirmed by the error distribution shown in Figure D.13. The
error-range spans at complete 180◦, whereas the lower quantile and median are close
at q.25 ≈ 15◦ and q.50 ≈ 40◦. While estimating half of the data at an error below
these angles, the next quarter settles up to q.75 . 100◦. We can observe the high
specialization of the trousers model here as it does not fit on the jacket datasets
well.

The Magnetic and Rotation Vector methods also yield similar results. Their com-
plete inter-quartile distance ranges from ≈ 35◦ up to 70◦ where it focuses at q.50 ≈
65◦. Although both datasets are generally restricted by our optimal flipping to-
wards the groundtruth, we can observe errors greater than 90◦. The reason for
outliers beyond this angle is our post-smoothing approach. The raw headings are
restricted, but due to special circumstances, solely averages will get a higher value.
We show a more detailed overview on this fact in Figure D.13 which depicts the
error distribution.

6.2.5.2 Trousers Dataset

We also give an overview on evaluation results for the trousers datasets as a boxplot
shown in Figure 6.6. Again, we can see some outliers at the GPS data. Moreover, our
New Estimation method as well as the New Trousers model fits well on the trousers
datasets are provide comparable results to GPS. Their upper quantile shows errors
below q.75 ≈ 30◦.

The Direct Acclerations are uniformly distributed over the complate range of 180◦.
Moreover, the Rotation Vector as well shows a uniform distribution over its possible
error range up to 90◦ due to flipping. This is confirmed by the error distribution
shown in Figure D.14.

Even worse are the results of our New Jacket model on the trousers datasets. The
lower quantile is at q.25 ≈ 95◦, whereas the upper quantile shows errors below q.75 ≈

70 6. Evaluation

165◦. As well as seen before at the jacket datasets, we can observe the specialization
of the models towards their target datasets.

The Magnetic approach does not provide a reliable heading estimation either. Al-
though the lower quantile is at q.25 ≈ 20◦, the focus of the complete error distribution
is at ≈ 80◦.

In fact, both results, of New Jacket and Magnetic method, would both be more
reasonable if flipped by 180◦. However, we currently have no explanation for this
behavior. Note, that again, the Rotation Vector as well as the Magnetic approach
are not completely bound to 90◦ here due to post-smoothing.

D
ire
ct

A
cc
el
er
at
io
nsN

ew

Tr
ou
se
rsN

ew

Ja
ck
etN

ew

Es
tim

at
io
n

M
ag
ne
tic
∗

R
ot
at
io
n

Ve
ct
or
∗

G
PS

0

30

60

90

120

150

180

ab
so
lu
te

h
ea
d
in
g
es
ti
m
at
io
n
er
ro
r
[◦
]

Figure 6.5 Model Evaluation: Jacket. This figure shows a boxplot of all dif-
ferent regarded techniques for heading estimation over all jacket testruns. We also
include Global Positioning System (GPS) as a reference.
As the New Estimation and New Jacket method provide good results. We see, that
our jacket model is competitive to GPS. The Magnetic and Rotation Vector approach
are similar. New Trousers model and the similar Direct Accelerations technique are
both outperformed by all other methods.

6.2. Evaluation on Collected Data 71

D
ire
ct

A
cc
el
er
at
io
nsN

ew

Tr
ou
se
rsN

ew

Ja
ck
etN

ew

Es
tim

at
io
n

M
ag
ne
tic
∗

R
ot
at
io
n

Ve
ct
or
∗

G
PS

0

30

60

90

120

150

180

ab
so
lu
te

h
ea
d
in
g
es
ti
m
at
io
n
er
ro
r
[◦
]

Figure 6.6 Model Evaluation: Trousers. This figure shows a boxplot of all
different regarded techniques for heading estimation over all trousers testruns. We
also include Global Positioning System (GPS) as a reference.
The New Estimation and New Trousers method provide good results. We see, that
our trousers model is competitive to GPS. The Rotation Vector approach is slightly
better than the Magnetic technique. The Direct Accelerations show a uniform error
distribution, whereas the jacket model shows a bias into the opposite direction and
thus, does not fit at all.

72 6. Evaluation

6.2.5.3 Complete Dataset

As the results on the complete dataset are the most important ones, we provide two
different representations of the absolute error distribution. These are a boxplot in
Figure 6.7 and the detailed error distribution in Figure 6.8 which also include GPS
as a reference.

The GPS and our New Estimation approach prove to give accurate and similar
results by looking into the distinct evaluations for our trousers and jacket model.

On average, the restricted New Jacket and New Trousers model give accurate results
as well with a median at q.50 . 25◦, but this representation is deceptive - at least for
the New Jacket method. We have already seen in the sections before (see Section
6.2.5.2 and Section 6.2.5.1), that the models do not correspond to datasets from the
type.

The Direct Acceleration technique does not provide an accurate heading estimation
in general. Although the median is at q.50 ≈ 45◦, the error distribution curve flat-
tens until reaching the upper quantile at q.75 . 120◦, i.e. about one third of the
estimations show an error at over 90◦.

Overall, the Rotation Vector and Magnetic heading estimation perform similar. Nev-
ertheless, the Magnetic approach is much better in the lower quantile, whereas the
Rotation Vector is slightly better in the other regions. By taking a look into the error
distribution, we observe that both approaches show a linear behavior in their error
distribution after the lower quantile at q.25 ≈ 30◦ until reaching the 90◦ boundary
caused by flipping.

Note again, that the Rotation Vector as well as the Magnetic approach are not
completely bound to 90◦ here due to post-smoothing. We can confirm the seldom
occurrences of higher errors by the presented error distribution.

6.2. Evaluation on Collected Data 73

D
ire
ct

A
cc
el
er
at
io
nsN

ew

Tr
ou
se
rsN

ew

Ja
ck
etN

ew

Es
tim

at
io
n

M
ag
ne
tic
∗

R
ot
at
io
n

Ve
ct
or
∗

G
PS

0

30

60

90

120

150

180

ab
so
lu
te

h
ea
d
in
g
es
ti
m
at
io
n
er
ro
r
[◦
]

Figure 6.7 Model Evaluation: Overall. This figure shows a boxplot of all dif-
ferent regarded techniques for heading estimation over all testruns. We also include
Global Positioning System (GPS) as a reference.
Our New Estimation approach gives overall similar results to GPS. Both, the New
Trousers and New Jacket model show a low median error due to the good results
on their specific target testruns, but cannot considered to give accurate results in
general. Again, the Magnetic and Rotation Vector approaches are similar, but not
as good as our new methods. Direct Accelerations have a median error below 50◦,
but its error distribution spans at a wide range.

74 6. Evaluation

0 15 30 45 60 75 90 105 120 135 150 165 180
0

0.25

0.5

0.75

1

error [◦]

cu
m

ul
at

iv
e

pe
rc

en
ta

ge

GPS
New Estimation

New Jacket
New Trousers

Magnetic Field∗

Rotation Vector∗

Direct Accelerations

Figure 6.8 Model Evaluation: Cumulative Error Distribution - Overall.
This figure shows the complete error distribution of the different regarded heading
estimation techniques on the whole testing data including Global Positioning System
(GPS) as a reference. The x-axis describes the absolute error, whereas the y-axis
describes the relative amount of measures below the corresponding absolute error.
Our New Estimation technique is almost similar to GPS. The trousers and jacket
model provide not as good overall results as they are designed for their specific device
locations. Rotation Vector and Magnetic are bound to and error below 90◦ degree
due to optimal flipping. They both outperform the Direct Accelerations technique
in terms of the q.75 quantile and their restriction to 90◦.
Note, that we have marked the quantiles of interest (q.25, q.50, q.75) for our New
Estimation approach.

6.2. Evaluation on Collected Data 75

6.2.6 Online Approach

On order to integrate our new heading estimation technique into FootPath (see
Section 2.5 and Section 4.1), we have implemented an online variant in java for
android. The evaluation uses the created JUnit framework (see Section 5.7.1) and
testcases to process the collected datasets. We have stored the processed results for
subsequent analysis and statistical evaluation.

The design of the testing framework allows us to give the complete data into the
system and let it act like an offline variant as well. Thus, we have run two different
instances of the framework on the whole data collection and separated the results
accordingly into online and offline. Furthermore, we track the actual type of the data
and keep this information to distinguish between the trousers and jacket datasets.

We present the results in a boxplot in Figure 6.9. In general, there are only small
differences between the online and offline variant for both datasets, i.e. trousers
and jacket. However, the online variant typically performs slightly worse. We also
provide a more detailed overview on the error distribution in Figure D.22.

Due to the limited local knowledge at the online approach, there arise differences
to the offline variant. We have seen, that our model distinction bases on the lin-
ear z-acceleration variance which results in some cases to locally different values
than for the complete dataset. Thus, the online algorithm switches the used model
parameters ad hoc and calculates sometimes values for the other model.

Moreover, the step detection depends on the model determination as well. We have
also investigated on the step detection in the online approach in comparison to the
offline approach. Figure 6.10 shows quantitative differences between both variants.
Due to different local variances in some cases, the step detection will detect a smaller
or greater amount of steps due to ad hoc model switching.

Trousers. If a trousers dataset shows locally smaller variances than typically usual,
it may be determined as a jacket instance while heading estimation and thus, the
step detection threshold will be lower. This leads to a higher amount of detected
steps. We can observe this behavior in the given figure as the online approach detects
8% more steps per dataset on average.

Jacket. The other way round, if a jacket dataset has sometimes a greater local
variance, it these segments may be determined as a trousers instance. This defines
a higher step detection threshold and thus, leads to a smaller amount of detected
steps. This behavior is also seen at the figure, where the online variant detects 4.1%
less steps than the offline variant.

76 6. Evaluation

O
ffl

in
e
Tro

us
er

s

O
ffl

in
e
Ja

ck
et

O
nl

in
e
Tro

us
er

s

O
nl

in
e
Ja

ck
et

0

30

60

90

120

150

180

ab
so

lu
te

h
ea

d
in

g
es

ti
m

at
io

n
er

ro
r

[◦
]

Figure 6.9 Model Evaluation: Online vs. Offline. This boxplot shows a
comparison between our offline and online version of the presented new approach.
The online versions perform slightly worse than their corresponding offline algorithm.
This is caused mainly due to the local knowledge restriction for model selection, i.e.
distinction between trousers and jacket model.

Offline Trousers Online Trousers Offline Jacket Online Jacket
0

50

100

150

200

250

+8.0% −4.1%

125

217

135

208

d
et

ec
te

d
st

ep
s

p
er

ru
n

Figure 6.10 Step Detection: Online vs. Offline. This chart shows a compar-
ison of detected steps per testrun (separated into trousers and jacket) between our
online and offline version of the step detection.
As our step detection also depends on correct model distinction, we can observe
small differences. The main reason is the local knowledge restriction for model
selection, i.e. distinction between trousers and jacket model, which leads to false
detections. However, trousers testruns tend to be classified as jacket instances at
some timepoints. This leads to a smaller step-detection timeout and results in a
higher amount of detected steps (+8.0%). The same holds for the jacket testruns
into the other direction (−4.1%).

6.2. Evaluation on Collected Data 77

6.2.7 Outliers

We have evaluated all datasets individually to investigate the different heading es-
timation techniques on each of them. We will focus on different types of outliers
in this section. These are false classified datasets and general outliers, where our
heading estimation method does not fit well.

6.2.7.1 False Device Location Estimation

As seen in Section 6.1, that we have four false detections for the device carrying lo-
cation. Three of these false detections are actually jacket-datasets, but are classified
as the trousers location. Moreover, our model distinction algorithm classifies one
actual trousers dataset as a jacket instance. We present evaluation results on these
specific datasets as a boxplot in Figure D.16.

In general, we observe, that all results are good. Although we use the other model
compared to the actual type, our algorithm provides a reliable heading estimation
with some outliers for these specific datasets.

However, in general, the step detection misses every second peak due to the step time-
out at wrongly classified jacket datasets. The same holds for the trousers datasets,
but in the other direction. At these wrongly classified trousers datasets, the step
detection recognizes every primary and secondary step which would usually not be
the case. We show a comparison of used model bearing estimation intervals mapped
to actual step intervals in Figure D.17.

Applying the jacket model on a trousers instance. Using the jacket model
on a trousers dataset results in more steps than we would usually detect as the step
timeout is smaller. Under the assumption, that we detect booth, each primary and
secondary step, the step amount will roughly be at factor 2 of the amount which
would have been detected using the trousers model. This means, that we calculate
two heading estimations for a single actual trousers-model-step period with the jacket
model interval It = [0.525, 0.95]. Mapping this interval on the actual step period
results in Isecondary = [0.5it0, 0.5i

t
1] and Iprimary = [0.5+0.5it0, 0.5+0.5it1]. These result

at our configuration in Isecondary = [0.2625, 0.475] and Iprimary = [0.7625, 0.975].

Taking a look into the trousers model parameter optimization (see Figure 6.3) shows,
that the used intervals Iprimary and Isecondary are by far not optimal, but also give
accurate results, whereas the primary interval shows a smaller error variance than
the secondary interval.

Applying the trousers model on a jacket instance. Due to the missing of each
second step, we only calculate a heading estimation over a period of two steps using
the trousers model interval It = [0.825, 0.975]. We can map this applied interval
on the period of two steps which results in I = [2it0, 2i

t
1]. Furthermore, the actual

relative interval applied to the second step at our configuration is I ′ = [0.65, 0, 95]

Taking a look into the jacket model parameter optimization (see Figure 6.3) shows,
that the used interval I ′ is not as robust as the chosen parameter, but the average
error per step is also low. This is an explanation why the false detected datasets
perform good anyway.

Note, that this also relates to our combined model presented in Section D.4.

78 6. Evaluation

6.2.7.2 Outliers in Heading Estimation

Evaluation on individual datasets with our New Estimation approach shows, that
7 datasets result in error rate with an upper quantile of q.75 > 45◦. We show
the resulting error distributions of these datasets in Figure 6.11. Furthermore, we
provide a boxplot in Figure D.18.

We can see in the error distribution, that most of these outliers perform at an upper
quantile below ≈ 70◦. We consider them as sufficiently reliable as their median
shows an error roughly below 50◦ which will be most likely sufficient for determining
a correct movement direction in combination with map data.

Two datasets (Jacket 3 and Trousers 3) give worse results. Their error distribution
shows a wide-ranged saddle point at their median at about 30◦ to 75◦.

Taking a closer look into the heading estimation results of the Jacket 3 dataset, we
can observe good performance (absolute errors below 30◦ which corresponds to the
median) for the first half of the testrun. But in the second half, after having turned
around, the heading estimation completely fails, whereas the step detection works as
expected (detecting every second step). We have no explanation for this behavior.

A detailed view on the heading estimation results of the Trousers 3 dataset reveals a
good performance for the first half of the testrun as well (absolute errors below 30◦

which corresponds to the median). However, the estimation results on the second
half are shifted by ≈ +100◦ which explains the increasing percentages of the error
distribution between 100◦ and 120◦. The step detection works as expected (detecting
the primary and secondary step). We have no explanation for this behavior.

6.2. Evaluation on Collected Data 79

0 15 30 45 60 75 90 105 120 135 150 165 180
0

0.25

0.5

0.75

1

error [◦]

cu
m

ul
at

iv
e

pe
rc

en
ta

ge

Jacket 1
Jacket 2
Jacket 3
Jacket 4

Trousers 1
Trousers 2
Trousers 3

Figure 6.11 False Model Selection: Comparison of Outliers. This figure
depicts the error distributions of out New Estimation approach at the estimation
outliers having q.75 > 45◦.
Most of the outliers show an upper quantile below 65◦ and we consider them as
sufficiently reliable. However, the Jacket 3 and Trousers 3 datasets show a wide-
ranged saddle point near their median at 30◦ to 75◦. Moreover, the estimation on
Trousers 3 dataset works a lot better than on the Jacket 3 dataset.

80 6. Evaluation

6.2.8 Example Path

In order to give a better understanding how the different methods relate and behave
on a real-world example, we present two (three) different test runs - with the device
inside the trousers pocket and inside the jacket pocket (we present a handheld ex-
ample as well in Figure D.24). The accomplished path (shown in Figure 6.12) in has
an overall distance of 200m and includes 4 doors as well as two level changes via a
staircase.

start

end

10m

2x

N

Figure 6.12 Example Run indoors - Map. This figure shows a map of the
building where we accomplished our the two exemplary test runs.
The path includes 4 doors and two level changes via a staircase and has an overall
distance of about 200m.

We can generally observe at these test runs, that our New Estimation method per-
forms good which holds especially in comparison to the other methods. However,
there are errors each time a significant bearing change takes place. These errors have
probably their origin in the lag of our method. Assume we have detected a step and
continue into the same direction. Whenever we change the direction right before
doing the next step, the heading estimation will fail compared to the groundtruth as
it calculates on the past sensor data since the last step. We illustrate this behavior
in Figure 6.13.

However, in the jacket example, both, the Rotation Vector and Magnetic method
show high errors rates with a median at q.50 ≈ 65◦, whereas the Magnetic approach
is generally better. Taking a closer look into the estimated bearings in Figure D.23
reveals, that both approaches completely fail to estimate the correct heading from
the beginning until 95s. Afterwards, we cannot find any clear error pattern as this
period introduces a high amount if bearing changes due to the staircase over two
levels.

6.2. Evaluation on Collected Data 81

Map: Measurements:

N

Step 1

Step 2

t
. . . 0◦ 0◦ 0◦ 0◦ 0◦ 90◦90◦ . . .

Step 1 Step 2

heading(Step 2)
= 1

n

∑
= 90◦

6
= 15◦

Figure 6.13 Heading Estimation Lag. This figure shows why heading changes
introduce errors compared to the groundtruth.
Every heading estimation depends on the collected sensor data since the last step.
This small example shows a constellation, where the user walks towards north and
turns towards east right before doing the next step. For simplicity of the example, we
will assume having direct heading data values available. Furthermore, we assume
using the average over all heading values since the last step for a new heading
estimation. Due to the fact, that the groundtruth at Step 2 is 90◦, but new estimation
calculation involves all data since the last step, this example will result in an absolute
estimation error of 75◦.
Note, that this error only happens on significant bearing changes will most probable
not have any critical effect in practice, but will at least result in latency.

The trousers example shows some more differences between the Rotation Vector and
Magnetic approach. Although the lower quantile of the Rotation Vector technique
is lower than the corresponding quantile of the Magnetic method, the Magnetic
method outperforms the Rotation Vector between their lower quantile and median
at an error of 40◦.

The Direct Accelerations perform good at both test runs which contradicts to the
generic information retrieved from the overall performance evaluation in Section
6.2.5, which states, that this method does not work very good at the trousers loca-
tion. The median is at qtrousers.50 . 30◦ and qjacket.50 ≈ 30◦, whereas the upper quantile
is at qtrousers.75 ≈ 45◦ and qjacket.75 . 100◦.

We provide an even more detailed view on the statistics via boxplots in Figure D.25
and Figure D.29, as well as in the error distributions in Figure D.27 and Figure D.30.

82 6. Evaluation

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
0

90

180

270

360

H
ea

di
ng

[◦
]

Expected
New Estimation
Rotation Vector∗

Magnetic Field∗

Direct Acceleratios
Bearing Changes

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
−180

−90

0

90

180

N
ew

E
st

im
at

io
n

E
rr

or
[◦
]

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
−180

−90

0

90

180

R
ot

at
io

n
V

ec
to

r∗
E

rr
or

[◦
]

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
−180

−90

0

90

180

M
ag

ne
ti

c∗
E

rr
or

[◦
]

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
−180

−90

0

90

180

Time [s]

D
ir

ec
t

A
cc

el
er

at
io

ns
E

rr
or

[◦
]

Figure 6.14 Example Run indoors - Results of Trousers Pocket. This figure
shows the results of our example run of the path depicted in Figure 6.12 with the
smartphone in the trousers pocket. The x-axis describes the passed time of the run.
Top: The upper graph’s y-axis describes the current heading in degree. We illus-
trate the expected heading values extracted from map data and estimated heading
information of the regarded techniques. Furthermore, we marked significant heading
changes by vertical dashed lines.
Center to Bottom: The other four subgraphs show an exact evaluation of the esti-
mated headings, where the y-axis represents the error.
The New Estimated performs well at low error rates except for higher errors at each
bearing change. Rotation Vector* and Magnetic* heading estimation results show
significantly higher error rates, although we apply flipping. Direct Accelerations
provide a much better heading estimation in this example, but is not as good as our
New Estimation method.

6.2. Evaluation on Collected Data 83

6.2.9 Decreased Sampling Rate

We have seen, that our testing device returns sensor values at 100Hz which is the
maximum the device can deliver. However, this is not the case with all devices and
all android versions. In fact, there are no precisely defined sampling rate operating
modes, but programming hints and the possibility to request a specific delay between
sensor events. The Android Application Programming Interface (API) introduces
4 different sampling rates which are fastest, game, ui and normal. According to
Milette et al. [37] these hints are hardcoded for Android 4.0.3 at sampling rates of
0Hz, 50Hz, 15Hz and 5Hz.

The general question is how our technique performs at lower sampling rates. Thus,
we have evaluated our model against the testing data while gradually decreasing
the resolution. In order to get a rough overview of our New Estimation at different
sampling rates, we decided to use the fractions 1

2
, 1
3
, 1
4
, ..., 1

16
of the full sampling.

This results in sensor data frequencies of 50.0Hz, 33.3Hz, . . . , 6.3Hz.

We accomplish sensor data downsampling by simply taking each nth sample in order
to get the fractional frequency of 1

n
from the full resolution version.

6.2.9.1 Model Distinction at Lower Resolution

The first module in our heading estimation pipeline is the model determination. This
means we have to deduct where the device is placed and which model to used from
the available sensor data. These model parameters are the basis for step detection
and heading estimation.

We have tested our model classification via linear z-acceleration on different sampling
rates. We depict the results in Figure 6.15. The number of false detections remains
stable at an absolute number of four over all different sampling rates. Moreover, the
interval for an optimal separation between the trousers and jacket model remains
also very stable and is overall valid in between a variance interval from 25.5 to 28
at all tested sampling rates.

Thus, we conclude, that our model distinction feature is very robust against different
sampling rates and usable even at very low frequencies.

6.2.9.2 Step Detection at Lower Resolution

To make sure, that the whole system works at lower resolutions, we have also eval-
uated our step detection at different sampling rates. This part is very crucial as all
subsequent processes and modules depend on a reliable step detection.

We illustrate the quantitative step detection results for different frequencies in Figure
6.16. In general, there are only small variations in the number of detected steps
relative to the 100Hz datasets. The amount of detected steps remains very stable
until there arise higher relative errors at 11.1Hz which already denotes a resolution
decrease by factor 9. However, the lower frequencies introduce a maximum relative
error of about 4%.

Thus, we conclude, that the step detection is very robust against different sampling
rates as well.

84 6. Evaluation

100 50.0 33.3 25.0 20.0 16.7 14.3 12.5 11.1 10.0 9.1 8.3 7.7 7.1 6.7 6.3
0

10

20

30

40

49

resolution [Hz]

nu
m

be
r

of
da

ta
se

ts

correct detections
false detections

20

25

30

35

cu
tt

in
g

z-
va

ri
an

ce

center cut variance
valid interval

Figure 6.15 Model Distinction at different Sampling Rates. This figure
shows model distinction at different sensor data sampling rates of our collected data.
The colored bars denote the number of correctly and wrongly classified test runs,
whereas we show the valid separating variance areas at the error bars.
Generally, the z-acceleration feature for model distinction is very robust against
different sampling rates.

100 50.0 33.3 25.0 20.0 16.7 14.3 12.5 11.1 10.0 9.1 8.3 7.7 7.1 6.7 6.3
0

1

2

3

4

resolution [Hz]

re
la
ti
ve

ab
so
lu
te

d
is
ta
n
ce

to
fu
ll
re
so
lu
ti
on

[%
]

Figure 6.16 Step Detection at different Sampling Rates. This figure shows
the relative average amount of detected steps over all testruns at different sensor
data sampling rates. We normalized the values to the full sampling rate of 100Hz.
The step detection is very robust against different sampling rates as the amount
decreases at lower sampling rates, but remains below an absolute error of 4%.

6.2. Evaluation on Collected Data 85

6.2.9.3 Model Evaluation at Lower Resolution

We have now proven, that the model distinction and step detection work as desired
at all different tested sampling rates on our test data. Furthermore, we have tested
our previously determined model parameters on the datasets with lower sampling
rate. We will continue discussing the results.

New Estimation. We depict our evaluation results for the New Estimation heading
estimation technique at lower sampling rates in Figure 6.17 as an error distribution.
It shows clearly, that the accuracy of heading estimation decreases with a decreas-
ing sampling rate. Our New Estimation technique outperforms all other presented
approaches in terms of the median at all sampling frequencies greater or equal to
about 10Hz, even when the others use the full sampling rate of 100Hz.

Sampling rates below 12.5Hz seem to suffer from discretization issues as they show a
significant rise of the error distribution at absolute errors of 90± 45◦ and 90◦± 55◦.
However, we have not yet analyzed this behavior any further as these low sampling
rates will usually be unlikely for a sensor-based application in the given context of
using smartphones.

Magnetic. We illustrate the results for the Magnetic method in Figure D.19 as
an error distribution as well. This method shows a contradicting behavior to the
New Estimation technique. Lower sampling rates lead to better heading estimation
results. When decreasing the resolution by factor 13, we improve the estimations
by values of about 5◦ to 15◦. However, we have no explanation for this behavior,
maybe the resolution reduction acts like a big Low-Pass (LP)-filter here.

Direction Accelerations and Rotation Vector. We provide error distributions of
the Rotation Vector in Figure D.20 and for the Direct Accelerations in Figure D.21.
The main observation at the Rotation Vector result is, that does not change at
all. The Direct Accelerations show a decreasing performance at decreasing sampling
rates until reaching a uniform distribution below a sampling rate of 10Hz. The shape
of the error distribution gradually approaches this uniform distribution.

6.2.9.4 Model Optimization at Lower Resolution

We have shown in Section 6.2.9.3, that the heading estimation performance of our
New Estimated method decreases with decreasing sampling rates of the sensor data.
However, the reason for this may be, that the used model parameters (obtained at
100Hz) do not fit on lower sampling rates.

In order to investigate this idea, we optimized the model parameters at the different
sampling rates as well. Due to lower sampling rates, we also decrease the model
parameter discretization resolution to 0.05 which is typically more than needed. We
present the results for the trousers model in Figure 6.18 and for the jacket model in
Figure 6.19.

Trousers Model. Looking at the full resolution of 100Hz, we can determine the
regions of well fitting parameters. By decreasing the sampling rate, these regions
get blurred, i.e. the overall error increases. by further decreasing the sampling rate,
the regions around i1 ≈ 0.9 are eroded. The remaining best parameter combinations

86 6. Evaluation

0 15 30 45 60 75 90 105 120 135 150 165 180
0

0.25

0.5

0.75

1

error [◦]

cu
m

ul
at

iv
e

pe
rc

en
ta

ge

100Hz
50.0Hz
33.3Hz
25.0Hz
20.0Hz
16.7Hz
14.3Hz
12.5Hz
11.1Hz
10.0Hz
9.1Hz
8.3Hz
7.7Hz

Figure 6.17 Model Evaluation at different Sampling Rates: Cumulative
Error Distribution - New Estimation. This figure depicts the error distributions
of our New Estimation approach at different sensor data sampling rates.
We can observe, that the heading estimation performs well with a q.75 error below
90◦ at a decreased sampling rate by factor 8 (12.5Hz). Even lower sampling rates
introduce higher errors. These instances also seem to suffer from discretization errors
at 90◦ ± 45◦ and 90◦ ± 55◦.

shift into a region around I = [0.1, 0.45] which shows, that our current model pa-
rameters, which have been fitting for the full sampling rate, do not fit for the lower
sampling rates.

Jacket Model. Although we can observe a similar behavior of an increasing er-
ror while decreasing the sampling rate at the jacket optimization results and blur-
ring, the optimal area does not shift as much as seen at the trousers model. Thus,
the 100Hz jacket model remains more stable for lower frequencies than the 100Hz
trousers model.

Discretization Issues. Moreover, we can see discretization artifacts at both op-
timization results. The main reason is, that the used optimization discretization
resolution becomes higher than the actual sensor data resolution. To make this
clear, consider a simple example with a jacket testrun. A typical step takes about
t = 600ms. The optimization now tries to find two good interval parameters at a
resolution of r = 0.05 chunking this period into 1

r
= 20 parts. These 20 timepoints

can only be distinguished if there are at least 20 different sensor data values avail-
able. In other words, for proper model fitting on a given model discretization, the
sampling rate of the sensor data is supposed to be at least 20

600ms
= 33.3Hz.

More general, let t denote the minimum time period for a step. Furthermore, let
s be the desired used frequency. Then the discretization step size r is sufficiently
small at r = t

s
.

6.2. Evaluation on Collected Data 87

0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1
i 1

100Hz

0 0.2 0.4 0.6 0.8

50Hz

0 0.2 0.4 0.6 0.8

33.3Hz

0 0.2 0.4 0.6 0.8

25Hz

3.4

3.6

3.8

4

4.2

av
g
lo
g
1
0

sq
ua

re
d

er
ro

r
pe

r
st

ep
[◦
]

0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

i0

i 1

12.5Hz

0 0.2 0.4 0.6 0.8

i0

10Hz

0 0.2 0.4 0.6 0.8

i0

8.3Hz

0 0.2 0.4 0.6 0.8

i0

6.3Hz

3.8

3.9

4

4.1

av
g
lo
g
1
0

sq
ua

re
d

er
ro

r
pe

r
st

ep
[◦
]

Figure 6.18 Model Parameter Determination at different Sampling Rates:
Trousers. This figure shows the model parameter optimization results in terms of
the average log10 squared error per step over all trousers testruns at different sensor
data sampling rates. The sampling rates span a range between full 100Hz and 6.3Hz.
We can see, that the optimal parameters change at lower sampling rates to a region
at i0 = 0.1 and i1 = 0.5, whereas the average error increases.

0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

i 1

100Hz

0 0.2 0.4 0.6 0.8

50Hz

0 0.2 0.4 0.6 0.8

33.3Hz

0 0.2 0.4 0.6 0.8

25Hz

3.4

3.6

3.8

4

4.2

4.4

av
g
lo
g
1
0

sq
ua

re
d

er
ro

r
pe

r
st

ep
[◦
]

0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

i0

i 1

12.5Hz

0 0.2 0.4 0.6 0.8

i0

10Hz

0 0.2 0.4 0.6 0.8

i0

8.3Hz

0 0.2 0.4 0.6 0.8

i0

6.3Hz

3.6

3.7

3.8

3.9

4

4.1

4.2

av
g
lo
g
1
0

sq
ua

re
d

er
ro

r
pe

r
st

ep
[◦
]

Figure 6.19 Model Parameter Determination at different Sampling Rates:
Jacket. This figure shows the model parameter optimization results in terms of the
average log10 squared error per step over all jacket testruns at different sensor data
sampling rates. The sampling rates span a range between full 100Hz and 6.3Hz.
We can see, that our optimal chosen parameter (i0 = 0.525, i1 = 0.95) remains stable,
but the area of “good” model parameters grows at lower sampling rates whereas
the average error increases. Furthermore, we probably can observe discretization
artifacts at frequencies below 8Hz.

88 6. Evaluation

6.3 Requirements fulfilled?

Movement determination. We have shown, that our method is capable of deter-
mining device movement by step detection. Furthermore, we succeed in providing a
reliable heading estimation out of the internal sensor data in most cases.

Realtime capability. Our online implementation is capable of detecting steps
and estimating the heading estimation at low latency. The latency depends on a
configured sampling interval for our algorithm in general. Due to the restriction that
our method depends on steps, intervals lower than typical step lengths simply make
no sense. However, typical examples of the trousers location have a maximum step
length of about 1 to 1.5 seconds or even less. The jacket location usually has a lower
step length in terms of the time period. Thus, the latency is very limited.

Moreover, we give the possibility to poll the current heading while we are not moving
(see Section 4.2.7 and Section 5.6.1.5).

Reaction on changes. Our online implementation is capable of changing the used
model ad hoc as we determine the type to use out of the local variance in linear
z-acceleration. This leads to solely false model usage in general, but the impact is
limited as shown in Section 6.2.6. Thus, our approach will probably be useful even
when the device position is changing while heading estimation.

Memory consumption. The online algorithm stores all gathered sensor data, but
only keeps a configurable time-period. This means, that we delete outdated sensor
data if the timestamp exceeds a configurable threshold. We have seen in Section
6.2.3.1, that pre-smoothing leads to overall worse results. Therefore we conclude,
that any data aggregation will typically represent some pre-smoothing and hence,
will lead to worse heading estimation results. This means, that we can only reduce
the amount of stored data at a tradeoff to accuracy.

Computational costs. The computational time of the offline approach is irrelevant
as we just use it for evaluation purposes. In practice, we can only use the online
variant.

The implementation of our datacollection has a limited memory consumption. How-
ever, due to simplicity, we currently instantiate sensor-data wrapping objects in order
to store them. Deletion of such an objects will make it unreferenced and hence, the
java garbage collector will clear its memory at any time in the future which takes
computation time. A solution to avoid this, is reusing outdated wrapper-instances.

A prominent and costly operation is the rotation-matrix determination at our sensor
fusion module. Furthermore, we have to rotate each single acceleration data item
in order to get its extrinsic representation which involves a costly 3 by 3 matrix
multiplication.

Our complete heading estimation pipeline consists of three general phases which are
device location determination for model distinction, step detection and the actual
heading estimation.

The location determination calculates the variance over a sliding window of the linear
z-acceleration with a configurable size. We do this at each execution of our algorithm.
However, the variance calculation can be speed up by using an incremental approach.

6.4. Heading Estimation - Comparison to Related Work 89

In order to detect steps, we use an Finite Impule Response (FIR)-filter to smooth
the z-accelerations, where the used filter mask depends on the currently used model.
Because of a possible model change, we do the actual smoothing when not before
needed, i.e. at each execution of our algorithm. The actual step detection then uses
a second (small-filter mask) FIR filtering instance for calculating the derivative of
z-accelerations. However, local extrema determination out of this data is a more
exhausting task because of multiple data iterations.

For the actual heading estimation, we request the sensor values at an interval of
interest (depending on the currently used model) and calculate an angle from the
linear x- and y-acceleration integral. Depending on model parameters, the amount of
used data varies. Currently, due to optimization results, we only use small intervals.

6.4 Heading Estimation - Comparison to Related Work

In general, the research community has only rarely focused on the topic of heading
estimation at different device locations till now - at least to our knowledge. Although
e.g. Park et al. [40] and Randell et al. [44] use locations different to the handheld
position, they do not give any information about heading estimation errors, but give
results on dead reckoning in general. This fact disallows us to compare our results
on the heading estimation towards theirs.

In the context of FootPath, it is possible to compare this approach with other dead
reckoning techniques, but we decided not to do any quantitative evaluation for sev-
eral reasons. First of all, FootPath uses sequence aligning for position estimation
(see Section 2.5.2) which in fact typically enhances the pure heading estimations in a
complex relationship. The positioning results will highly depend on the used align-
ing implementation. Tests have shown, that the current BestFit algorithm does not
give accurate results in connection to our new heading estimation. The origin of this
problem is most probable the currently sharp distinguishing scoring function. We
consider MultiFit as highly experimental. Furthremore, it takes a lot computation
time. FirstFit provides worse results than all other methods in genal and thus, has
not been tested.

Moreover, Footpath uses a fixed step length for the time being (see Section 2.5.1).
This will cause the complete system to be error prone towards distance measurements
in general - especially, if this step length is not suitably defined for the current user.
This fact complicates a reasonable evaluation.

90 6. Evaluation

6.5 New Navigation Interfaces

We have discussed alternate navigation interfaces in Section 3.3.2. We decided to
introduce two new feedback types which are presented in Section 4.3.3.

As an analysis of “good” feedback types via different media is a very nontrivial
task, we only provide a framework which easily enables complex feedback rules and
provides the possibility for verbal audio and vibrational feedback.

Such rules base on typical interest points which are extracted from map data like
doors, level changes, stairs and significant bearing changes (see Section 4.3.2). Our
introduced Metric Linear Temporal Logic (MLTL) logic (see Section 4.3.4) allows
sophisticated scenario determination, e.g. checking if there is a door on the upcoming
path at a range of 20m, but without any level changes until then.

However, we implemented some example rules which generally give simple turn by
turn instructions. This is similar to commercial (car-)navigation systems, but with
adapted feedback for pedestrian navigation purposes. We give these instructions
either via the vibration interface or via audio. The vibration interface uses three
patterns for left, right or an error (see Section 4.3.3.2), whereas the audio interface
uses a Text-to-Speech (TTS) engine which enables to give more complex information
(see Section 4.3.3.1).

Practical usage - Audio. In order to test our implementation, we did several
test runs with at the typical handheld device location which is already implemented
in FootPath. The navigation module works as expected and gives the feedback as
desired.

However, for practical usage, we run into trouble because of the fixed step length.
Feedback can get lost, is given too early or too late on the path due to the fundamen-
tal design of FootPath. If we set the step length too large, the navigation module
assumes the user to be at a certain position where he should change the direction,
e.g. turn left, although this does not correspond to the actual user position, but
some future point on the navigation path. Moreover, if we set the step length too
small, the user may miss actual bearing changes as the navigation module assumes
the user to be at a path’s previous position.

Even more critical is the aligning method of FootPath. Due to the sequence aligning
and the resulting position estimation enhancing, FootPath may changed the esti-
mated position drastically, i.e. jumps, and thus, the rules for navigation feedback
may fail giving reliable feedback.

6.6. Summary 91

6.6 Summary

In this chapter, we have presented a very detailed evaluation on our new method
for heading estimation. This includes the investigation on the device location es-
timation algorithm (6.1) as well as a sophisticated analysis of our new technique
compared to other commonly used ones for handheld device locations (6.2.5)). In
general, our approach shows comparable (or even better) results to GPS. Although
we do the theoretical assumption of optimal flipping for the Magnetic and Rotation
Vector method to make them even more competitive (6.2.2), our method outper-
forms them by far. The Direct Accelerations approach has proven to be worse than
all others in most cases. Furthermore, a combined model for both locations, Jacket
and Trousers, has been evaluated, but performs worse in comparison to our New
Estimation technique.

Furthermore, we have discussed the different outliers in terms of false location de-
tection and failed heading estimation in detail (6.2.7).

Due to the need of an online, adaptable realtime algorithm, we present results of our
java online implementation. Generally, this variant suffers from local data knowl-
edge, but results are comparable (6.2.6).

To generally improve results, we present a comparison of non-post-smoothing against
simple post-smoothing method, which turned out to yield better results for all pre-
sented heading estimation approaches (6.2.3.2), whereas pre-smoothing does not
result in better estimations.

Moreover, we provide an overview how our method behaves on reduced sensor data
sampling rate (6.2.9.3). Generally, the accuracy of the heading estimation decreases
when decreasing the sampling rate. However, to show that this is not a fact of a
failing step detection (6.2.9.2) or wrong data classification (6.2.9.1), we show results
of both modules at lower sampling rates which have proven to be robust even at very
low frequencies. Moreover, we present model optimization results for lower sampling
rates which lead to other model parameters at very low sampling rates (6.2.9.4).

A very important keynote is, that we use the same datasets for model fitting and
evaluation. Although the collected data has been recorded from over 15 participants,
it may not be representative. Nevertheless, due to the lack of more data, we decided
to keep the approach in this constellation. Furthermore, exemplary testruns have
been recorded and are presented (6.2.8) which reveal similar good results for our
new estimation technique as seen in the overall evaluation.

We provide even more evaluation results in Appendix D.

92 6. Evaluation

7
Future Work

We have introduced a new generalized model for heading estimation which has
proven to outperform other tested methods. However, there are several possibili-
ties to enhance the system. In this chapter, we will give some short ideads on future
work.

7.1 Device Location Determination

The device location estimation cannot always distinguish between the trousers and
jacket location. This means, that the used feature (variance of linear z-acceleration)
is not sufficient. Although the resulting outliers of our testing data show nevertheless
mostly good results, it is possible to enhance the determination technique.

A good starting point for enhancing this estimation will probably be the observa-
tion of primary and secondary steps at the trousers pocket location which typically
result in two different amplitudes of peaks. We have seen, that our step detection
can reliably detect all peaks. Currently we filter for only the primary peaks by
smoothing and a step detection timeout. However, a careful estimation on primary
and secondary steps by tracking the peaks’ amplitudes may lead to a more robust
location estimation.

Another possibility will be using a Fourier Transform in order to detect major fre-
quencies on the z-acceleration. Depending on the device location, e.g. trousers or
jacket pocket, we can observe a major frequencies at roughly 1Hz for the trousers
location and about 2Hz for the jacket location. As the frequency spectrum usually
has multiple frequencies with similar power, we cannot simply distinguish between
both locations by only regarding the most prominent frequency which means, that
this approach needs further analysis. Besides using a Discrete Fourier Transform
(DFT), a Discrete Cosine Transform (DCT) may also be suitable for this approach.

94 7. Future Work

7.2 New Models

Our new approach considers two different new locations. Although the elaborated
model instances may fit to other carrying locations, other new specialized model
instances will most probable improve the heading estimation for new use cases.
Model parameters can be determined by collecting training data and following our
optimization approach.

We have shown how to distinguish between the new different locations - the trousers
pocket and jacket pocket. However, the we use only the z-acceleration variance as
a feature for this purpose, which is will not be sufficient to do a more sophisticated
distinction between these two locations and others. Thus, introducing new model
instances will also need to find more features for device location determination.

7.3 Individual Model Fitting and Learning

We have introduced a generalized model which may have different instances as well
as specialized methods for device location distinction. Although our model has been
trained with data of different persons, the typical walking pattern of a certain person
may be totally different.

Manual Training. Nevertheless, it is possible to create a personal model for each
individual. As a disadvantage, this will need training data directly from the user
and will need some computation time on current smartphones for getting optimal
parameters.

Learning. In order to create an adaptive model, there is need to create a database
with training data. Data for this database will be provided each time using Footh-
Path for navigation. As the step detection works with a low error rate, whenever
there is a segment of the navigation path being unique, i.e. there are no other
walking possibilities, we can use these segments to improve the current model. Fur-
thermore, it is possible to aid this kind of training with some more user interaction,
where it can be selected after having reached a destination via navigation, whether
there had been any remarkable wrong turns.

7.4 Better Rules for User-Feedback

We have presented a framework for determining the current users scenario on a given
path and provide the possibility for vibrational and audio feedback. Furhtermore,
we implemented some simple rules for user feedback. However, these rules are by
far not trivial - not in a programmatric aspect, but in a psychological manner. The
whole topic on human perception and cognition is more up to the field of psychology
or communication science than computer science.

7.5. Adapt Step Length on the Fly 95

7.5 Adapt Step Length on the Fly

This work concentrates on heading estimation. Nevertheless, an accurate step length
estimation is crucial for correct user position determination which is in turn impor-
tant for non-visual navigation feedback. On the one hand, if the step length is
estimated too large, the system will most probable provide navigation feedback too
early. On the other hand, if the step length is estimated too small, the navigation
feedback will be given too late.

For the time being, FootPath does not introduce any variable step length or an
adaptive estimation technique, but a fixed size. However, we already introduced
different approaches to this issue (see Section 3.2.4). Thus, using some kind of
adaptive step length estimation will enhance the system.

7.6 Using Barometer

There has been research on also using barometer sensor data for better user local-
ization. Related work shows, that the barometer sensor data is very realiable and
thus, we can use it for detecting stairs and level changes exactly. Although the
atmospheric pressure tends to change in general, this is a long-term process due to
weather changes. Thus, this sensor gives useful information about relative altitude
changes.

7.7 Combine Multiple Localization Technologies

Besides the Pedestrian Dead Reckoning (PDR) approach for indoor localization,
there have been introduced several other methods which use e.g. Wireless Fidelity
(WiFi), Radio-frequency identification (RFID) or Bluetooth. Some approaches also
combine PDR with such other data sources. Incorporating more distinct data about
locations will also enable the system to improve location estimation performance.
Even only having single certain fixed points available will reset a possibly accumu-
lated error in a PDR approach.

96 7. Future Work

8
Conclusion

We have introduced a general method to enable an attitude independent movement
detection using typical Microelectromechanical systems (MEMS) sensors available
on todays smartphones. We have deducted a model for heading estimation from
the typical human walking procedure and present a method for its parameter de-
termination using optimization on given training data. Movement determination in
general bases on three different tasks: step detection, heading estimation and step
length estimation, whereas step length estimation is considered to be out of focus as
there already have been introduced methods for this purpose by several researchers.

We introduced two exemplary model instances: for the trousers and the jacket
pocket. For this reason, we elaborated on a simple feature for their distinction.
Moreover, the model parameters are calculated by optimization on training data
against two target functions - the least squares error and error variance between
different testruns.

In order to get qualitative results, we evaluated our new methods in detail. We
compare results towards three common other approaches which use either extrinsic
direct linear acceleration values, the magnetic field in combination with accelerations
(Magnetic) or the android internal fused Rotation Vector sensor. Although we as-
sume theoretical optimal conditions for the Magnetic and Rotation Vector approach
using flipping, our new approach outperforms all other presented techniques by far.

To generally improve the results, we investigated the impact of sensor data pre-
smoothing at different magnitudes as well as simple post-smoothing on estimation re-
sults. The pre-smoothing does not yield better results at all, whereas post-smoothing
improves the estimations for all regarded heading estimation approaches.

Our device location algorithm shows good overall results. However, rare testruns
are classified wrongly, whereas using our jacket model on a trousers dataset (and the
other way round) on the affected datasets show acceptable results anyway.

98 8. Conclusion

As most evaluation has been performed with an offline variant of our method, we
also provide a comparison to our online algorithm. We can observe, that the location
classification rarely fails due to limited data knowledge, but we consider this impact
non-critical as results are similar to the offline variant.

The used datasets have been recorded at full possible sampling rate (100Hz) of the
used device which have been used directly. In order to illustrate the behavior of lower
sampling frequencies, we evaluated the regarded techniques at decreased sampling
rates by up to factor 16 (6.3Hz). Results clearly show, that the performance of our
heading estimation technique decreases with decreasing sampling rates in general.
However, we consider our technique as still usable down to 25Hz. Due to similar
optimization results on the lower resolution data, we conclude, that other model
parameters will not improve these results significantly.

Besides the heading estimation, we also provide a framework for FootPath, that is
capable of extracting navigation relevant information from given map data in order
to create Interest Points for a predefined path automatically. We enable non-expert
programmers to create sophisticated feedback rules by introducing Metric Linear
Temporal Logic (MLTL) which allows for easy scenario determination.

Moreover, this framework tracks the current user position and enables the trigger-
ing of navigation feedback which is currently given either via vibration or verbal
audio using a Text-to-Speech (TTS) engine. However, creating precise environment-
dependent navigation hints in terms of human cognition are out of the scope of this
thesis. Therefore, we solely provide a set of proof of concept feedback rules.

Bibliography

[1] Android API: SensorEvent. Online Resource. http://developer.android.

com/reference/android/hardware/SensorEvent.html, accessed 2013/02/21.

[2] Indoor Mapping. Online Resource. http://wiki.openstreetmap.org/wiki/

Indoor_Mapping, accessed 2012/02/16.

[3] Junit. Online Resource. http://junit.org, accessed 2013-03-21.

[4] MATLAB Product Website. Online Resource. http://www.mathworks.de/

products/matlab/, accessed 2013-03-02.

[5] Marktforscher: Android und iPhone verdrängen die Konkurrenz. Online Re-
source, August 2012. http://heise.de/-1663552, accessed 2013/02/15.

[6] Bahl, P., and Padmanabhan, V. N. Radar: An in-building rf-based user
location and tracking system. In INFOCOM 2000. Nineteenth Annual Joint
Conference of the IEEE Computer and Communications Societies. Proceedings.
IEEE (2000), vol. 2, IEEE, pp. 775–784.

[7] Beauregard, S., and Haas, H. Pedestrian dead reckoning: A basis for
personal positioning. In Proceedings Of the 3rd workshop on Positioning, Nav-
igation and Communication (2006), pp. 27–36.

[8] Bitsch Link, J. A., Gerdsmeier, F., Smith, P., and Wehrle, K. Indoor
navigation on wheels (and on foot) using smartphones. In Proceedings of the
2012 International Conference on Indoor Positioning and Indoor Navigation
(IPIN), Sydney, Australia (11 2012), pp. 1–10.

[9] Bitsch Link, J. A., Smith, P., Viol, N., and Wehrle, K. Footpath:
Accurate map-based indoor navigation using smartphones. In Proceedings of
the 2011 International Conference on Indoor Positioning and Indoor Navigation
(IPIN), Guimaraes, Portugal (9 2011), IEEE, pp. 1–8.

[10] Farrell, J., and Barth, M. The global positioning system and inertial
navigation. McGraw-Hill, 1999.

[11] Feliz, R., Zalama, E., and Gómez, J. Pedestrian tracking using inertial
sensors. Journal of Physical Agents 3, 1 (2009).

[12] Fink, A., Schröder, C., Schellin, A., and Beikirch, H. Embedded
intertial measurement unit for real-time sensor integration and data process-
ing. In Indoor Positioning and Indoor Navigation (IPIN), 2012 International
Conference on (November 2012), IEEE.

http://developer.android.com/reference/android/hardware/SensorEvent.html
http://developer.android.com/reference/android/hardware/SensorEvent.html
http://wiki.openstreetmap.org/wiki/Indoor_Mapping
http://wiki.openstreetmap.org/wiki/Indoor_Mapping
http://junit.org
http://www.mathworks.de/products/matlab/
http://www.mathworks.de/products/matlab/
http://heise.de/-1663552

100 Bibliography

[13] Forsyth, D. A., and Ponce, J. Computer Vision: A Modern Approach,
1 ed. Prentice Hall, August 2002.

[14] Giudice, N. A., Bakdash, J. Z., and Legge, G. E. Wayfinding with
words: spatial learning and navigation using dynamically updated verbal de-
scriptions. Psychological research 71, 3 (2007), 347–358.

[15] Godha, S., Lachapelle, G., and Cannon, M. E. Integrated gps/ins
system for pedestrian navigation in a signal degraded environment. In In ION
GNSS (2006).

[16] Goodman, J., Gray, P., Khammampad, K., and Brewster, S. Using
landmarks to support older people in navigation. Mobile Human-Computer
Interaction–MobileHCI 2004 (2004), 37–57.

[17] Groves, P. Principles of GNSS, inertial, and multi-sensor integrated naviga-
tion systems. GNSS technology and applications series. Artech House, 2008.

[18] Grädel, E. Course Notes: Mathematische Logik, 2009.

[19] Hide, C., Botterill, T., and Andreotti, M. Low cost vision-aided imu
for pedestrian navigation. In Ubiquitous Positioning Indoor Navigation and
Location Based Service (UPINLBS) (2010), IEEE, pp. 1–7.

[20] Holland, S., Morse, D. R., and Gedenryd, H. Audiogps: Spatial au-
dio navigation with a minimal attention interface. Personal and Ubiquitous
Computing 6, 4 (2002), 253–259.

[21] Hong, F., Chu, H., Wang, L., Feng, Y., and Guo, Z. Pocket matter-
ing: Indoor pedestrian tracking with commercial smartphone. In International
Conference on Indoor Positioning and Indoor Navigation (IPIN), 2012 Inter-
national Conference on) (2012), vol. 13.

[22] ITU-T Study Group 16. Video coding for low bit rate communication. Rec-
ommendation H.263, International Telecommunication Union, January 2005.

[23] Jahn, J., Batzer, U., Seitz, J., Patino-Studencka, L., and Gutiér-
rez Boronat, J. Comparison and evaluation of acceleration based step length
estimators for handheld devices. In Indoor Positioning and Indoor Navigation
(IPIN), 2010 International Conference on (September 2010), pp. 1–6.

[24] Jimenez, A., Seco, F., Prieto, C., and Guevara, J. A comparison of
pedestrian dead-reckoning algorithms using a low-cost mems imu. In Intelli-
gent Signal Processing, 2009. WISP 2009. IEEE International Symposium on
(August 2009), pp. 37 –42.

[25] Jirawimut, R., Ptasinski, P., Garaj, V., Cecelja, F., and Balachan-
dran, W. A method for dead reckoning parameter correction in pedestrian
navigation system. Instrumentation and Measurement, IEEE Transactions on
52, 1 (February 2003), 209–215.

[26] Kainulainen, A., Turunen, M., Hakulinen, J., and Melto, A. Sound-
marks in spoken route guidance. In Proceedings Intl. Conf. Auditory Displays
(ICAD, Montréal, Canada) (2007), pp. 107–111.

Bibliography 101

[27] Kang, W., Nam, S., Han, Y., and Lee, S. Improved heading estimation for
smartphone-based indoor positioning systems. In Personal Indoor and Mobile
Radio Communications (PIMRC), 2012 IEEE 23rd International Symposium
on (September 2012), pp. 2449 –2453.

[28] Keller, F., Willemsen, T., and Sternberg, H. Calibration of smart-
phones for the use in indoor navigation. In Indoor Positioning and Indoor
Navigation (IPIN), 2012 International Conference on (November), pp. 1–8.

[29] Kim, J. W., Jang, H. J., and Hwang, D.-H. A Step, Stride and Head-
ing Determination for the Pedestrian Navigation System. Journal of Global
Positioning Systems 3 (2004), 273–279.

[30] Kim, Y., Shin, H., and Cha, H. Smartphone-based wi-fi pedestrian-tracking
system tolerating the rss variance problem. In Pervasive Computing and Com-
munications (PerCom), 2012 IEEE International Conference on (2012), IEEE,
pp. 11–19.

[31] Kothari, N., Kannan, B., and Dias, M. B. Robust indoor localization on
a commercial smart-phone. Tech. Rep. CMU-RI-TR-11-27, Robotics Institute,
Pittsburgh, PA, August 2011.

[32] Ladetto, Q., Gabaglio, V., and Merminod, B. Combining Gyroscopes,
Magnetic Compass and GPS for Pedestrian Navigation. In International Sym-
posium on Kinematic Systems in Geodesy, Geomatics and Navigation (KIS),
Banff, Canada (2001), pp. 205–212.

[33] Li, Y., and Wang, J. A robust pedestrian navigation algorithm with low cost
imu. In Indoor Positioning and Indoor Navigation (IPIN), 2012 International
Conference on (Novemver 2012), pp. 1–7.

[34] Lin, M.-W., Cheng, Y.-M., Yu, W., and Sandnes, F. E. Investigation
into the feasibility of using tactons to provide navigation cues in pedestrian
situations. In Proceedings of the 20th Australasian Conference on Computer-
Human Interaction: Designing for Habitus and Habitat (2008), ACM, pp. 299–
302.

[35] Liu, J., Chen, R., Pei, L., Guinness, R., and Kuusniemi, H. A Hybrid
Smartphone Indoor Positioning Solution for Mobile LBS. Sensors 12, 12 (2012),
17208–17233.

[36] Meier, R. Professional Android 4 Application Development. Wrox Program-
mer to Programmer. Wiley, 2012.

[37] Milette, G., and Stroud, A. Professional Android Sensor Programming.
Wrox Programmer to Programmer. Wiley, 2012.

[38] Neumann, A. TIOBE-Sprachindex: Android verhilft Java zurück zur
Spitze. Online Resource, February 2013. http://heise.de/-1801281, accessed
2013/02/21.

http://heise.de/-1801281

102 Bibliography

[39] Ojeda, L., and Borenstein, J. Personal dead-reckoning system for gps-
denied environments. In Safety, Security and Rescue Robotics, 2007. SSRR
2007. IEEE International Workshop on (September 2007), pp. 1 –6.

[40] Park, K., Shin, H., and Cha, H. Smartphone-based pedestrian tracking in
indoor corridor environments. Personal and Ubiquitous Computing 17 (2013),
359–370.

[41] Pielot, M., Poppinga, B., and Boll, S. Pocketnavigator: vibro-tactile
waypoint navigation for everyday mobile devices. In Proceedings of the 12th
international conference on Human computer interaction with mobile devices
and services (2010), ACM, pp. 423–426.

[42] Pratama, A., Widyawan, and Hidayat, R. Smartphone-based pedes-
trian dead reckoning as an indoor positioning system. In System Engineering
and Technology (ICSET), 2012 International Conference on (September 2012),
pp. 1–6.

[43] Rai, A., Chintalapudi, K. K., Padmanabhan, V. N., and Sen, R.
Zee: zero-effort crowdsourcing for indoor localization. In Proceedings of the
18th annual international conference on Mobile computing and networking (New
York, NY, USA, 2012), Mobicom ’12, ACM, pp. 293–304.

[44] Randell, C., Djiallis, C., and Muller, H. L. Personal position mea-
surement using dead reckoning. In ISWC (2003), pp. 166–175.

[45] Ruotsalainen, L., Kuusniemi, H., and Chen, R. Heading change detec-
tion for indoor navigation with a smartphone camera. In Indoor Positioning
and Indoor Navigation (IPIN), 2011 International Conference on (2011), IEEE,
pp. 1–7.

[46] Ruotsalainen, L., Kuusniemi, H., and Chen, R. Visual-aided two-
dimensional pedestrian indoor navigation with a smartphone. Journal of Global
Positioning Systems 10, 1 (2011), 11–18.

[47] Scarlett, J. Enhancing the performance of pedometers using a single ac-
celerometer. Application Note, Analog Devices (2008).

[48] Schnelle, D., Lyardet, F., and Wei, T. Audio navigation patterns. In
EuroPLoP (2005), pp. 237–260.

[49] Shin, B., Lee, J. H., Lee, H., Kim, E., Kim, J., Lee, S., su Cho, Y.,
Park, S., and Lee, T. Indoor 3d pedestrian tracking algorithm based on pdr
using smarthphone. In Control, Automation and Systems (ICCAS), 2012 12th
International Conference on (October 2012), pp. 1442 –1445.

[50] Skog, I., Nilsson, J.-O., and Handel, P. Evaluation of zero-velocity
detectors for foot-mounted inertial navigation systems. In Indoor Positioning
and Indoor Navigation (IPIN), 2010 International Conference on (September
2010), pp. 1–6.

Bibliography 103

[51] Slabaugh, G. Computing euler angles from a rotation matrix. Tech. rep., City
University London, August 1999. http://www.soi.city.ac.uk/~sbbh653/

publications/euler.pdf.

[52] Stark, A., Riebeck, M., and Kawalek, J. How to design an advanced
pedestrian navigation system: Field trial results. In Intelligent Data Acqui-
sition and Advanced Computing Systems: Technology and Applications, 2007.
IDAACS 2007. 4th IEEE Workshop on (2007), IEEE, pp. 690–694.

[53] Weinberg, H. Using the adxl202 in pedometer and personal navigation ap-
plications. Analog Devices AN-602 application note (2002).

[54] Wilson, J., Walker, B. N., Lindsay, J., Cambias, C., and Dellaert,
F. Swan: System for wearable audio navigation. In Wearable Computers, 2007
11th IEEE International Symposium on (2007), IEEE, pp. 91–98.

[55] Ábrahám, E. Course Notes: Modeling and Analysis of Hybrid Systems, April
2011.

http://www.soi.city.ac.uk/~sbbh653/publications/euler.pdf
http://www.soi.city.ac.uk/~sbbh653/publications/euler.pdf

104 Bibliography

List of Figures

2.1 Dead Reckoning . 6

2.2 Pedestrian Dead Reckoning . 6

2.3 Instrinsic and Extrinsic Coordinates 8

2.4 FootPath: Major Functional Building Blocks 10

2.5 Simple Step Detection . 11

2.6 Matching Algorithms in Comparison 12

2.7 Navigation User Inferface . 14

3.1 Peak- and Zero Crossing Step Detection in Comparison 18

3.2 Weinberg Stride Length Estimation Geometry 21

3.3 Vibration Direction Encoding . 26

4.1 Layer Design of (new) Components 30

4.2 Survey Device Locations . 32

4.3 Survey Results - “Where do you carry your smartphone?” 32

4.4 Survey Results - “What location would be acceptable to carry your
smartphone?” . 32

4.5 Step Detection and Heading Estimation Pipeline 34

4.6 Walking Motion - Different Phases 35

4.7 Example - Actual Path and corresponding Overlay Graph 39

4.8 Modeling Building Areas . 41

4.9 Example Set of Vibration-Feedback Patterns 43

4.10 Example (M)LTL Path Evaluations 46

5.1 Finite Impulse Response (FIR) Filter 51

5.2 Simplified Class Diagram - Orientation Determination 56

5.3 Navigation Feedback Overview . 57

106 List of Figures

6.1 Model Distinction by z-Acceleration Variance 62

6.2 Model Evaluation: Post-Smoothing 65

6.3 Model Parameter Determination: Jacket 67

6.4 Model Parameter Determination: Trousers 68

6.5 Model Evaluation: Jacket . 70

6.6 Model Evaluation: Trousers . 71

6.7 Model Evaluation: Overall . 73

6.8 Model Evaluation: Cumulative Error Distribution - Overall 74

6.9 Model Evaluation: Online vs. Offline 76

6.10 Step Detection: Online vs. Offline . 76

6.11 False Model Selection: Comparison of Outliers - Cumulative Error
Distribution . 79

6.12 Example Run indoors - Map . 80

6.13 Heading Estimation Lag . 81

6.14 Example Run indoors - Results of Trousers Pocket 82

6.15 Model Distinction at different Sampling Rates 84

6.16 Step Detection at different Sampling Rates 84

6.17 Model Evaluation at different Sampling Rates: Cumulative Error Dis-
tribution - New Estimation . 86

6.18 Model Parameter Determination at different Sampling Rates: Trousers 87

6.19 Model Parameter Determination at different Sampling Rates: Jacket . 87

B.1 Schematic Overview: Rotation Matrix Calculation 118

D.1 Flipping Results . 124

D.2 Flipping Evaluation - Magnetic . 125

D.3 Flipping Evaluation - Rotation Vector 125

D.4 Estimation Method Behavior at different Presmoothing Magnitudes -
New Estimation . 127

D.5 Estimation Method Behavior at different Presmoothing Magnitudes -
New Jacket (only Jacket Datasets) 128

D.6 Estimation Method Behavior at different Presmoothing Magnitudes -
New Trousers (only Trousers Datasets) 128

D.7 Estimation Method Behavior at different Presmoothing Magnitudes -
Magnetic* . 129

List of Figures 107

D.8 Estimation Method Behavior at different Presmoothing Magnitudes -
Rotation Vector* . 129

D.9 Estimation Method Behavior at different Presmoothing Magnitudes -
Direction Accelerations . 130

D.10 Model Evaluation: Postsmoothing Jacket 130

D.11 Model Evaluation: Postsmoothing Trousers 131

D.12 Model Parameter Determination: Combined 133

D.13 Model Evaluation: Cumulative Error Distribution - Jacket 134

D.14 Model Evaluation: Cumulative Error Distribution - Trousers 135

D.15 Model Evaluation: Cumulative Error Distribution - Combined 136

D.16 False Model Selection: Comparison of Outliers - Boxplot 137

D.17 Model Parameter Comparison - Trousers vs. Jacket Model 138

D.18 False Model Selection: Comparison of Outliers 139

D.19 Model Evaluation at different Sampling Rates: Cumulative Error Dis-
tribution - Magnetic* . 141

D.20 Model Evaluation at different sampling rates: Cumulative Error Dis-
tribution - Rotation Vector* . 142

D.21 Model Evaluation at different sampling rates: Cumulative Error Dis-
tribution - Direct Accelerations . 142

D.22 Cumulative Error Distribution: Online vs. Offline 143

D.23 Example Run indoors - Results of Jacket Pocket 146

D.24 Example Run indoors - Results of Handheld 147

D.25 Example Run Evaluation: Jacket . 148

D.26 Example Run Evaluation: Handheld 148

D.27 Example Run Evaluation: Cumulative Error Distribution - Jacket . . 149

D.28 Example Run Evaluation: Cumulative Error Distribution - Handheld 149

D.29 Example Run Evaluation: Trousers 150

D.30 Example Run Evaluation: Cumulative Error Distribution - Trousers . 151

108 List of Figures

List of Tables

2.1 Smartphone Operating Systems Q2 2012 9

3.1 Overview: Dead Reckoning Results 24

A.1 Survey results “Where do you typically carry your smartphone?” . . . 115

A.2 Survey results “What place would also be acceptable?” 116

D.1 Device Location Estimation Results 123

110 List of Tables

List of Tables 111

112 List of Tables

List of Abbreviations

AP Access Point

API Application Programming Interface

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

DLT Direct Linear Transform

DMM Direct Matching Mode

DR Dead Reckoning

FIR Finite Impule Response

GPS Global Positioning System

GUI Graphical User Interface

HMM Hidden Markov Model

ICS Ice Cream Sandwich

IDE Integrated Development Environment

IMU Inertial Measurement Unit

INS Inertial Navigation System

JNI Java Native Interface

JOSM Java OpenStreetMap Editor

LMM Lookahead Matching Mode

LP Low-Pass

LTL Linear Temporal Logic

MEMS Microelectromechanical systems

MLTL Metric Linear Temporal Logic

114 List of Abbreviations

NN Neural Network

OHA Open Handset Alliance

OS Operating System

OSM Open Street Map

PDR Pedestrian Dead Reckoning

RANSAC random sample concensus

RFID Radio-frequency identification

RMSE Root Mean Squared Error

RSSI Received Signal Strength Indicator

RWTH Rheinisch Westfälische Technische Hochschule Aachen

TTS Text-to-Speech

WiFi Wireless Fidelity

XML Extensible Markup Language

ZC zero crossing

ZUPT Zero Velocity Update

A
Survey Results - Where do you carry
your smartphone?

This chapter contains a more detailed overview of our survey about smartphone
carrying loations. We present the complete results in Table A.1 and Table A.2.

Location Always [%] Sometimes [%] Never [%]
m f both m f both m f both

Trouser Pocket (front) 80 18 63 15 32 19 5 50 17
Trouser Pocket (back) 5 4 5 8 25 13 87 71 83
Jacket Pocket (outer) 3 11 5 35 61 42 63 29 53
Jacket Pocket (inner) 5 0 4 40 32 38 55 68 58
Belt 0 0 0 0 0 0 100 100 100
Arm 0 0 0 4 0 3 96 100 97
Shirt Pocket 0 0 0 12 7 11 88 93 89
Backpack 4 46 6 24 43 29 72 46 65
Bag 3 61 18 12 32 17 85 7 64

Table A.1 Survey results “Where do you typically carry your smart-
phone?”. Each row describes the answers for a certain location. Three big columns
represent the possible answers always, sometimes and never. The location and an-
swer possibilities are split into three different sets - only male (m), only female (f)
and all (both) participants. The number of participants is 103.
There are not many locations which are widely used. Overall, the most preferred
locations are trouser pocket and jacket pocket. We notice a difference between male
and female participants at trouser pocket and bag. However, most answers are alike.

116 A. Survey Results - Where do you carry your smartphone?

Location Definitley [%] Maybe [%] No Chance [%]
m f both m f both m f both

Trouser Pocket (front) 88 45 77 5 32 13 7 21 11
Trouser Pocket (back) 11 29 16 19 14 17 71 57 67
Jacket Pocket (outer) 28 64 38 40 18 34 32 18 28
Jacket Pocket (inner) 43 50 45 41 36 40 16 14 16
Belt 3 7 4 37 14 31 60 79 65
Arm 5 0 4 21 36 25 73 64 71
Shirt Pocket 9 4 8 28 36 30 63 61 62
Backpack 23 54 31 33 21 30 44 25 39
Bag 13 82 32 35 14 29 52 4 39

Table A.2 Survey results“What place would also be acceptable?”. Each row
describes the answers for a certain location. Three big columns represent the possible
answers definitely, maybe and no chance. The location and answer possibilities
are split into three different sets - only male (m), only female (f) and all (both)
participants. The number of participants is 103.
The most acceptable locations are trouser pocket (front) and jacket pocket (inner and
outer). We also observe good acceptance rates for the bag and backpack location.

B
Heading Ambiguity at Magnetic
Field and Accelerations

In order to calculate a heading towards north, we will calculate a rotation matrix
which transforms intrinsic coordinates into extrinsic coordiantes. We do this by
calculating the world-axis basis vectors out of the acceleration data and the magnetic
field data as both act as a fixed point in worl coordinates. We illustrate the calculated
vectors in Figure B.1 [51].

B.1 Rotation Matrix

We define these sensor values as follows:

A = (ax, ay, az)
t (B.1)

M = (mx,my,mz)
t (B.2)

We now assume using the definition presented in Figure 2.3 which defines orthogonal
axes. First of all, the accelerations already define our extrinsic z-axis as the gravity
directs towards the ground:

Down := A · ‖A‖−1 = A ·
√
a2x + a2y + a2z

−1
(B.3)

= (dx, dy, dz)
t (B.4)

118 B. Heading Ambiguity at Magnetic Field and Accelerations

x

y

z

M

A

West

North

Figure B.1 Schematic Overview: Rotation Matrix Calculation. This figure
depicts the used vectors for the calculation of the rotation matrix which transforms
intrinsic to extrinsic coordinates. The coordinate system defines the intrinsic coor-
dinates. We denote the direction of accelerations, i.e., gravity, with A (red), whereas
the direction of the magnetic field is denoted as M. We also present the resulting
directions West (green) and North (blue) which depict the extrinsic coordinate sys-
tem together with the accelerations vector. Note, that the vectors are generally
normalized.

Furthermore we calculate the west-direction which will represent our x-axis in ex-
trinsic coordinates by taking the cross product of the magnetic field with the accel-
erations which is normalized afterwards.

West′ := A×M (B.5)

=

∣∣∣∣∣∣
mx my mz

dx dy dz
ex ey ez

∣∣∣∣∣∣ =

mxdy −mzdy
mydz −mydz
mzdy −mydx

 (B.6)

West := West′ · ‖West′‖−1 (B.7)

= (wx, wy, wz)
t (B.8)

Moreover, having the west direction, we can get the direction towards north by cal-
culating the cross product of the west direction and the accelerations. The resulting
vector will describe the y-axis of the extrinsic coordinate system.

North := Down×West = (nx, ny, nz)
t (B.9)

As we now have all three distinct orthogonal axes, we define the rotation matrix
transforming intrinsic to extrinsic coordinates as follows, whereas each column of
this matrix defines a basis change:

R :=


wx nx ax
wy ny ay
wz︸︷︷︸
x

nz︸︷︷︸
y

az︸︷︷︸
z

 (B.10)

B.2. Heading 119

B.2 Heading

We will show, that extracting the heading towards north is usually ambiguous. We
demonstrate this by analyzing 3d rotation matrices in general [51]. Each three-
dimensional rotation consists of three rotations around different axes at different
angles. We denote these as Rx(ψ), Ry(θ) and Rz(φ):

Rx(ψ) =

1 0 0
0 cosψ sinψ
0 − sinψ cosψ

 , Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , (B.11)

Rz(φ) =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 (B.12)

However, these rotations can be combined by applying matrix multiplication. Note,
that these rotations are not commutative. We introduce generic identifiers for each
matrix entry due to the need of calculating on single cells later on. The results of
the combined rotation matrix then looks as follows:

R = [Ry(θ)Rx(ψ)]Rz(φ) (B.13)

=

R11 R12 R13

R21 R22 R23

R31 R32 R33

 (B.14)

=

 cos θ cosφ sinψ sin θ cosφ− cos θ sinφ cosψ sin θ
cosψ sinφ cosψ cosφ − sinψ

sinφ sinψ cos θ − cosφ sin θ sin θ sinφ+ cos θ cosφ sinψ cosψ cos θ


(B.15)

As we only want to extract the heading towards north, i.e., the y-axis angle, we first
calculate the angle θ using the matrix entry R31:

R23 = − sinψ ⇔ ψ = − arcsinR23 (B.16)

This equation yields two different valid solutions in general (whenever R23 6= ±1
hols). We will stick to this case now and exclude those, wehre the solution is un-
ambiguous. This result it the typical reason for the two different valid headings
mentioned in Section 4.2.4. Nevertheless, we get two different angles - ψ1 and ψ2

which will be exactly 180◦ into the opposite direction of each other:

R23 6=±1
====⇒ ψ1 = − arcsinR23, ψ2 = π − arcsinR23 (B.17)

Having determiend the first parameter, we can continue with the actually desired
rotation angle φ which describes the rotation arount the y-axis, i.e., the heading
towards north. Taking a closer look to the matrix entries R21 and R22 shows, that
both solely contain the already determined ψ as wel as the heading angle φ. After
a minor algebraic equivalence transformation, we get the following:

R21 = cosψ sinφ, R22 = cosψ cosφ (B.18)

sinφ =
R11

cosψ
cosφ =

R21

cosψ
(B.19)

120 B. Heading Ambiguity at Magnetic Field and Accelerations

Due to the ambiguity of sine and cosine, we have to solve this equation system. Note,
that the fraction of cosine and sine describe the tangent. As the angle depends on
the proportion of the length of the adjacent and the opposite leg, we can calculate
it via the atan2 function as follows:

φ = atan2

(
R21

cosψ
,
R22

cosψ

)
(B.20)

This general formula will result in a unique solution, but due to the fact, that we
have two possible values for θ, we get the following equations:

⇒ φ1 = atan2

(
R21

cosψ1

,
R22

cosψ1

)
, φ2 = atan2

(
R21

cosψ2

,
R22

cosψ2

)
(B.21)

However, the angle θ has the same impact on both legs, but the primary unambiguity
is a result of a sign change which also leads to both valid solutions φ1 and φ2.

C
MLTL Examples

We have seen in Section 4.3.4 how we can use Metric Linear Temporal Logic (MLTL)
for our path-evaluation. We will now discuss some simple examples.

Reaching the destination. Assuming having reached the destination in a region
of about 5m at the actual destination, a formula to express this may look like follows:

F [0,5]X false (C.1)

Bearing change but nothing different. Let us assume that we want to filter out
simple bearing changes, but only if there is nothing special before or after this event
in a range of 20m. Then the formula may look like this:(

G [0,20] ¬ (Door ∨ Stairs ∨ LevelChange)
)
∧ F [0,20] BearingChange (C.2)

Bearing change and door afterwards, but nothing other in between. To
identify the scenario that we have a bearing change (in the next 15m) followed by a
door to pass (in the next 10m), a formula for this would be the following:

¬ (Door ∨ Stairs ∨ LevelChange)

(C.3)

U [0,15]
(

BearingChange ∧ X
(
¬ (BearingChange ∨ Stairs ∨ LevelChange) U [0,10] Door

))
(C.4)

Nothing special, but some interesting facts. If there is nothing to happen on
the current path, we can check whether we have some doors left or right of the path.(
G [0,50] ¬ (Door ∨ LevelChange ∨ BearingChange ∨ Stairs)

)
∧ F [0,50] NearDoor

(C.5)

122 C. MLTL Examples

D
Evaluation

This chapter will give more information for the different evaluations presented in
chapter 6. These additional results allow a deeper understanding of the discussed
results.

D.1 Device Location Determination

We have presented evaluation results on the device location determination approach
in Section 6.1. However, a tabularly representation is presented in Table D.1.

estimated type
trousers pocket jacket pocket

actual trousers pocket 23 95.6% 1 4.2%
type jacket pocket 3 12.0% 22 88.0%

Table D.1 Device Location Estimation Results. The absolute number de-
picts the amount of determined locations of test runs, whereas the percentage shows
the fractional relation. The trousers location is well detected with one false detec-
tion sample, whereas the jacket location shows a higher error rate with an absolute
number of three false detections which leads to an error rate of 12.0%.

124 D. Evaluation

D.2 Flipping

We have already mentiond the problem of flipping in Section 4.2.2 and Section 4.2.4.
Due to get more competitive results, we have used flipping against the ground truth
for evaluation purposes in general. Due to the fact, that the actual heading is
not available, we also investigated on a simple method using Direct Accelerations.
However, the overall presented in Figure D.1 results show, that flipping by this
approach yields worse results. Moreover, we did not concentrate on this any further
as the newly introduces method outperforms the other regarded techniques by far.
Nevertheless, we provide error distribution of the flipping results in Figure D.2 and
Figure D.3.

M
ag

ne
ti
c

no
fli

pp
in

g

M
ag

ne
ti
c

A
cc

el
er

at
io
ns

M
ag

ne
ti
c

N
ew

E
st
im

at
io
n

M
ag

ne
ti
c

G
ro

un
dT

ru
th

R
ot

at
io
n

V
ec

to
r

no
fli

pp
in

g

R
ot

at
io
n

V
ec

to
r

A
cc

el
er

at
io
ns

R
ot

at
io
n

V
ec

to
r

N
ew

E
st
im

at
io
n

R
ot

at
io
n

V
ec

to
r

G
ro

un
dT

ru
th

0

30

60

90

120

150

180

Flipping Type

ab
so
lu
te

h
ea
d
in
g
es
ti
m
at
io
n
er
ro
r
[◦
]

Figure D.1 Flipping Results. This figure shows a comparison of different mea-
sures for flipping.
We have discussed, that the Rotation Vector and Magnetic approach may fail in
estimating the correct direction (see Section 4.2.2 and Section 4.2.4). For a correct
determination if the calculated heading has to be flipped, we have to include move-
ment direction data.
If we do not apply flipping, we notice a high error for Rotation Vector and Magnetic
(q.50 & 70◦). Flipping by Direct Accelerations leads to even worse results, whereas
the Magnetic technique together with the Direction Accelerations performs better
than the Rotation Vector-Direction Accelerations combination. However, flipping
by our new Estimation and ground truth yield best results (q.75 . 70◦), whereas the
flipping towards ground truth restricts the error to an absolute value of 90◦ and thus,
performs slightly better. In general, the Rotation Vector provides better results than
the Magnetic approach.

D.2. Flipping 125

0 15 30 45 60 75 90 105 120 135 150 165 180
0

0.25

0.5

0.75

1

error [◦]

cu
m

ul
at

iv
e

pe
rc

en
ta

ge

Magnetic - No Flipping
Magnetic - Direct Accel. Flipping
Magnetic - Groundtruth Flipping

Figure D.2 Flipping Evaluation - Magnetic. This figure shows the complete
error distribution of the regarded heading estimation techniques at the example
handheld run. The x-axis describes the absolute error, whereas the y-axis describes
the relative amount of measures below the corresponding absolute error.
Flipping the Magnetic values by the ground truth yields best results. No flipping
yields even better results than flipping by Direction Accelerations, but the results
are quite similar with q.25 ≈ 60◦, q.75 ≈ 80◦ and q.75 ≈ 100◦.

0 15 30 45 60 75 90 105 120 135 150 165 180
0

0.25

0.5

0.75

1

error [◦]

cu
m

ul
at

iv
e

pe
rc

en
ta

ge

Rotation Vector - No Flipping
Rotation Vector - Direct Accel. Flipping
Rotation Vector - Groundtruth Flipping

Figure D.3 Flipping Evaluation - Rotation Vector. This figure shows the
complete error distribution of the regarded heading estimation techniques at the
example handheld run. The x-axis describes the absolute error, whereas the y-axis
describes the relative amount of measures below the corresponding absolute error.
Flipping the Rotation Vector values by the ground truth yields best results. No
flipping yields even better results than flipping by Direction Accelerations with a
roughly linear increasing amount of errors until q.75 ≈ 85◦, whereas a quarter of the
estimations show an error of more than 90◦. The flipping by Direct Accelerations
perform worse at q.50 ≈ 90◦ and q.75 ≈ 120◦.

126 D. Evaluation

D.3 Smoothing

In this section, we primarily discuss the influence of pre-smoothing. Moreover, we
provde furhter statistics on post-smoothing.

D.3.1 Presmoothing

The presemoothing uses the unsmoothed data for step detection in order to keep
the same step segmentation. However, the actual bearing estimation then uses
smoothed data. This means, that we apply a gaussian filter at different sizes on
each used dataset before doing any further calculation. This discrete gaussian filter
uses a variance of σ = filterwidth/4 which normally yields a coverage of about 96%
of the continuous gauss function, whereas the filterwidth depends on the target time
period. Finally, we normalize the filter to make it numerically consistent. Note, that
we apply postsmoothing on the results afterwards.

We present the results of presmoothing on our New Estimation method in Figure D.4.
In general, presmoothing has no impact on the Rotation Vector and Magnetic ap-
proach, whereas the Direct Acceleration and New Estimation technique show worse
results at all presmoothed datasets. In fact, these techniques already involve a kind
of average smoothing by taking the mean measured heading of all sensor data items
for a complete step sequence.

Further statistics separating our datasets into jacket and trousers location are given
in Figure D.5, in Figure D.6. Overall results for the Magnetic, Rotation Vector and
Direct Accelerations approach are shown in Figure D.7, in Figure D.8 and in Figure
D.9, respectively.

D.3.2 Postsmoothing

We have alread discussed the impact of our postsmoothing method in Section 6.2.3.2.
We provide further distinct information of the error distributions separated into the
different models in Figure D.10 and Figure D.11.

D.3. Smoothing 127

0 0.5 1 1.5 2 2.5 3
0

30

60

90

120

150

180

smoothing filter size [s]

ab
so
lu
te

er
ro
r
[◦
]

New Estimation q.90
New Estimation q.75
New Estimation q.50
New Estimation q.25

Figure D.4 Estimation Method Behavior at different Presmoothing Mag-
nitudes - New Estimation. This figure shows different quantiles of the error
distribution of the New Estimation method at different magnitudes of presmooth-
ing. The y-axis depicts the error value of the quantile, whereas the x-axis denotes
the used filter size in terms of time.
We can see, that presmoothing does not improve the performance of our New Es-
timation method. However, the lower quantile as well as the median of the error
distribution show a significant peak around filter sizes of 1s. We assume, that these
filter sizes damp the typical major walking frequencies.

128 D. Evaluation

0 0.5 1 1.5 2 2.5 3
0

30

60

90

120

150

180

smoothing filter size [s]

ab
so
lu
te

er
ro
r
[◦
]

New Jacket (on jacket) q.90
New Jacket (on jacket) q.75
New Jacket (on jacket) q.50
New Jacket (on jacket) q.25

Figure D.5 Estimation Method Behavior at different Presmoothing Mag-
nitudes - New Jacket (only Jacket Datasets). This figure shows different
quantiles of the error distribution of the New Jacket method only on jacket datasets
at different magnitudes of presmoothing. The y-axis depicts the error value of the
quantile, whereas the x-axis denotes the used filter size in terms of time.
The behavior of the different quantiles show, that presmoothing does not improve
the performance of the New Jacket method at all. We can observe two peaks - one
at filter size 1s and a second at filter size 2s. We assume, that these filter sizes damp
the major walking frequencies as already seen in Figure D.4.

0 0.5 1 1.5 2 2.5 3
0

30

60

90

120

150

180

smoothing filter size [s]

ab
so
lu
te

er
ro
r
[◦
]

New Trousers (on trousers) q.90
New Trousers (on trousers) q.75
New Trousers (on trousers) q.50
New Trousers (on trousers) q.25

Figure D.6 Estimation Method Behavior at different Presmoothing Mag-
nitudes - New Trousers (only Trousers Datasets). This figure shows different
quantiles of the error distribution of the New Trousers method only on trousers
datasets at different magnitudes of presmoothing. The y-axis depicts the error value
of the quantile, whereas the x-axis denotes the used filter size in terms of time.
The behavior of the different quantiles show, that presmoothing does not improve
the performance of the New Trousers method at all. We can observe one extreme
peak at filter size 0.7s. We assume, that this filter size damps the major walking
frequencies as already seen in Figure D.4.

D.3. Smoothing 129

0 0.5 1 1.5 2 2.5 3
0

30

60

90

120

150

180

smoothing filter size [s]

ab
so
lu
te

er
ro
r
[◦
]

Magnetic* q.90
Magnetic* q.75
Magnetic* q.50
Magnetic* q.25

Figure D.7 Estimation Method Behavior at different Presmoothing Mag-
nitudes - Magnetic*. This figure shows different quantiles of the error distribution
of the Magnetic method at different magnitudes of presmoothing. The y-axis de-
picts the error value of the quantile, whereas the x-axis denotes the used filter size
in terms of time.
We cannot observe any significant change in performance of the Magnetic technique
for different presmoothing values.

0 0.5 1 1.5 2 2.5 3
0

30

60

90

120

150

180

smoothing filter size [s]

ab
so
lu
te

er
ro
r
[◦
]

Rotation Vector* q.90
Rotation Vector* q.75
Rotation Vector* q.50
Rotation Vector* q.25

Figure D.8 Estimation Method Behavior at different Presmoothing Mag-
nitudes - Rotation Vector*. This figure shows different quantiles of the error
distribution of the Rotation Vector method at different magnitudes of presmoothing.
The y-axis depicts the error value of the quantile, whereas the x-axis denotes the
used filter size in terms of time.
We cannot observe any significant change in performance of the Rotation Vector
technique for different presmoothing values.

130 D. Evaluation

0 0.5 1 1.5 2 2.5 3
0

30

60

90

120

150

180

smoothing filter size [s]

ab
so
lu
te

er
ro
r
[◦
]

Direct Accelerations q.90
Direct Accelerations q.75
Direct Accelerations q.50
Direct Accelerations q.25

Figure D.9 Estimation Method Behavior at different Presmoothing Mag-
nitudes - Direction Accelerations. This figure shows different quantiles of the
error distribution of the Direction Accelerations method at different magnitudes of
presmoothing. The y-axis depicts the error value of the quantile, whereas the x-axis
denotes the used filter size in terms of time.
Presmoothing does not improve the performance of the Direction Accelerations ap-
proach. Furthermore, we see a peak in the statistical values of the error distribution
at 0.5s. However, we currently have no explanation for this behavior.

0 15 30 45 60 75 90 105 120 135 150 165 180
0

0.25

0.5

0.75

1

error [◦]

cu
m

ul
at

iv
e

pe
rc

en
ta

ge

postsmoothed New Estimation
postsmoothed Magnetic Field∗

postsmoothed Rotation Vector∗

postsmoothed Direct Accelerations
New Estimation
Magnetic Field∗

Rotation Vector∗

Direct Accelerations

Figure D.10 Model Evaluation: Postsmoothing Jacket. This figure depicts
the error distributions of the regarded heading estimation approaches with and with-
out postsmoothing.
We can observe, that postsmooth drastically improves the performance of our New
Estimation, pushing down the q.75 quantile from 35◦ to 17◦. Furthermore, the Direct
Acceleration method is very improved with a change of the q.50 from 60◦ down to 30◦.
The other methods are also improved, but not as significantly as both mentioned
ones.
Note, that we have marked the quantiles of interest (q25, q50, q75) for our New Esti-
mation approach.

D.3. Smoothing 131

0 15 30 45 60 75 90 105 120 135 150 165 180
0

0.25

0.5

0.75

1

error [◦]

cu
m

ul
at

iv
e

pe
rc

en
ta

ge

postsmoothed New Estimation
postsmoothed Magnetic Field∗

postsmoothed Rotation Vector∗

postsmoothed Direct Accelerations
New Estimation
Magnetic Field∗

Rotation Vector∗

Direct Accelerations

Figure D.11 Model Evaluation: Postsmoothing Trousers. This figure de-
picts the error distributions of the regarded heading estimation approaches with and
without postsmoothing.
The postsmoothing at the trousers model does not improve performance as dras-
tically as at the jacket model. The Rotation Vector method shows slightly better
performance, whereas the Magnetic approach shifts its q.25 quantile from 55◦ to 20◦.
Note, that we have marked the quantiles of interest (q25, q50, q75) for our New Esti-
mation approach.

132 D. Evaluation

D.4. Model Parameter Optimization 133

D.4 Model Parameter Optimization

We have already discussed the optimization results for the distinct datasets in Sec-
tion 6.2.4, i.e. trousers and jacket, which have resulted in two different models.
Evaluation in Section 6.2.5 has shown, that each model does not fit for a good
heading estimation for a dataset of the other type.

Nevertheless, we have also calculated the optimization results on the complete
dataset in order to get a model that fits both locations. We present the results in
Figure D.12. Furthermore, we present results on heading estimation with this com-
bined model in comparison to our New Estimation method in Figure D.15. Note,
that we used our device location estimation technique for step detection.

In general, we have best optimization results for the trousers model at a lowest mean
squared error per step of 1163.7◦ which corresponds to an average absolute error per
step of ≈ 34◦. The jacket datasets result in a lowest mean squared error per step
of 2165.2◦ which corresponds to an average absolute error per step of ≈ 47◦. In
contrast to this, the combined model shows a lowest mean squared error per step of
2626.5◦. This results in an average error per step of ≈ 51◦.

However, we can get especially for trousers datasets by far better heading estima-
tions.

0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

i0

i 1

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

av
g
lo
g
1
0

sq
ua

re
d

er
ro

r
pe

r
st

ep
[◦
]

0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

i0

i 1

1

2

3

4

5

6

7

8

9
·1012

va
ri

an
ce

of
sq

ua
re

d
er

ro
r
[◦
]

Figure D.12 Model Parameter Determination: Combined. This figure shows
the results of model optimization for the all testruns. Both graphics show all valid
model-intervals [i0, i1[which determine the range of values for the heading estimation
per step. Generally, darker quads relate to better results, whereas lighter quads relate
to worse results.
Left : Each quad depicts the average log10 squared error per step in degree which is
encoded into the gray-value.
Right: Each quad depicts the average variance of the sum of squared errors over all
testruns. The results vary highly between subsequent possible discretized interval
values. However, we have chosen our final model parameter by taking both values
into account which is marked with the white circle at i0 = 0.725 and i1 = 0.925.
Note, that we have marked the optimal parameters with the white solid circle. The
dashed circles mark our parameters for the distinctive models.

134 D. Evaluation

D.5 Model Evaluation

We have already discussed in Section 6.2.5 the evaluation on our newly introduced
models. However, we provide a more detailed overview on the error distributions for
the jacket model in Figure D.13 and for the trousers model in Figure D.14.

0 15 30 45 60 75 90 105 120 135 150 165 180
0

0.25

0.5

0.75

1

error [◦]

cu
m

ul
at

iv
e

pe
rc

en
ta

ge

GPS
New Estimation

New Jacket
New Trousers

Magnetic Field∗

Rotation Vector∗

Direct Accelerations

Figure D.13 Model Evaluation: Cumulative Error Distribution - Jacket.
This figure shows the complete error distribution of the different regarded heading
estimation techniques on all jacket datasets including Global Positioning System
(GPS) as a reference. The x-axis describes the absolute error, whereas the y-axis
describes the relative amount of measures below the corresponding absolute error.
The restriction to use the jacket model as well as the New Estimation technique
are almost similar to GPS - or even better. The Direct Accelerations method and
our trousers model perform acceptable with q.50 . 30◦, but the Rotation Vector and
Magnetic approach outperform both at a percentage of about 65% with an error
below 70◦.
Note, that we have marked the quantiles of interest (q.25, q.50, q.75) of the New
Estimation technique.

D.5. Model Evaluation 135

0 15 30 45 60 75 90 105 120 135 150 165 180
0

0.25

0.5

0.75

1

error [◦]

cu
m

ul
at

iv
e

pe
rc

en
ta

ge

GPS
New Estimation

New Jacket
New Trousers

Magnetic Field∗

Rotation Vector∗

Direct Accelerations

Figure D.14 Model Evaluation: Cumulative Error Distribution - Trousers.
This figure shows the complete error distribution of the different regarded heading
estimation techniques on all trousers datasets including Global Positioning System
(GPS) as a reference. The x-axis describes the absolute error, whereas the y-axis
describes the relative amount of measures below the corresponding absolute error.
The restriction to use the trousers model as well as the New Estimation technique
are almost similar to GPS, but outperforms it at a percentage of about 90% with
errors below 45◦. The Direct Accelerations method and expecially our jacket model
fail to provide a reliable heading estimation with a median of about 90◦ and 140◦,
respectively. Due to flipping, the Magnetic approach provides accurate results, but
most errors are in a range of 60◦ to 90◦. In contrast to this, the Rotation Vector
performs significantly better with an even error distribution between 0◦ and 90◦.
Note, that we have marked the quantiles of interest (q.25, q.50, q.75) of the New
Estimation technique.

136 D. Evaluation

0 15 30 45 60 75 90 105 120 135 150 165 180
0

0.25

0.5

0.75

1

error [◦]

cu
m

ul
at

iv
e

pe
rc

en
ta

ge

New Estimation
New Combined

Figure D.15 Model Evaluation: Cumulative Error Distribution - Com-
bined. This figure depicts the complete error distributions of the Combined model.
We can see, that this approach provides a reliable heading estimation at an upper
quantile of q.75 < 50◦, but its results are inferior to our twofold New Estimation
technique.

D.5. Model Evaluation 137

D.5.1 Outliers

We present results for falsely location estimated datasets in Figure D.16. Besides the
statistical data, we provide a comparison between the falsely used model parameters
in Figure D.17.

Moreover, to give a better overview, we also provide a boxplot of the errors at
heading estimation with our New Estimation method for the outliers having an
upper quantile of over 45◦ in Figure D.18.

Ja
ck
et
1

N
ew

Tr
ou
se
rs

Ja
ck
et
1

N
ew

Ja
ck
et

Ja
ck
et
2

N
ew

Tr
ou
se
rs

Ja
ck
et
2

N
ew

Ja
ck
et

Ja
ck
et
3

N
ew

Tr
ou
se
rs

Ja
ck
et
3

N
ew

Ja
ck
et

Tr
ou
se
rs
1

N
ew

Tr
ou
se
rs

Tr
ou
se
rs
1

N
ew

Ja
ck
et

0

30

60

90

120

150

180

ab
so
lu
te

h
ea
d
in
g
es
ti
m
at
io
n
er
ro
r
[◦
]

Figure D.16 False Model Selection: Comparison of Outliers. This figure
shows a boxplot of all false detected datasets. For each dataset, we calculated the
heading estimated twice, using the New Trousers and New Jacket model.
Generally, all results are good and show a small amount of outliers. However, the
trousers model does not fit as good as the jacket model on the actually jacket
datasets. The jacket model shows even better results than the trousers model on
the falsely determined trousers dataset.

138 D. Evaluation

Trousers
assumed as

Jacket
0 1 2

0 1
0.5 · iJ0

0.5 · iJ1
0.5 + 0.5 · iJ0

0.5 + 0.5 · iJ1

iJ0 iJ1 iJ0 iJ1

actual step

detected step

mapped interval

detection interval

Jacket
assumed as

Trousers

0 1 2

0 1

2 · iT0
2 · iT1

iT0 iT1

actual step

detected step

mapped interval

detection interval

Figure D.17 Model Parameter Comparison - Trousers vs. Jacket model.
This figure shows a generic parameter comparison between the trousers and jacket
model under the assumption, that the step detection at the trousers model misses
each second peak due to the distinction between secondary and primary leg. The
black horizontal line depicts the time of the step period in terms of the actual model.
The red horizontal line shows the time of the detected step period (i.e. the period
of the assumed model). We have colored the used and transformed intervals blue.
Note, that the shown intervals correspond qualitatively to our determined model.
Top: We can see, that a trousers dataset processed with our jacket model shows the
doubled amount of steps - i.e. per actually one step (which would be the primary
step), we detect two (primary and secondary). Moreover, our algorithm estimates a
heading with the interval parameters from the jacket model for both of these detected
steps. The blue rectangles mark the used intervals of the actual step period.
Bottom: We can see, that a jacket dataset processed with our trousers model shows
only the half amount of steps - i.e. each second step is missed due to the higher step
timeout. This results in a heading estimation for each two-step sequence. However,
we marked the used interval at each second step blue.

D.5. Model Evaluation 139

Ja
ck
et
1

Ja
ck
et
2

Ja
ck
et
3

Ja
ck
et
4

Tr
ou
se
rs
1

Tr
ou
se
rs
2

Tr
ou
se
rs
3

0

30

60

90

120

150

180

ab
so
lu
te

h
ea
d
in
g
es
ti
m
at
io
n
er
ro
r
[◦
]

Figure D.18 False Model Selection: Comparison of Outliers. This figure
shows the error distributions of out New Estimation approach at the estimation
outliers having q.75 > 45◦..
Out estimation method works quite good on most of these datasets with their median
below 50◦ and an upper quantile mostly below ≈ 70◦. However, two exceptions are
the Jacket 3 and Trousers 3 datasets which both provide a very good estimation
on half of the data. In comparison, the estimation is a lot better at the Trousers 3
dataset in compared to the Jacket 3 dataset as its upper quantile settles at ≈ 100◦,
whereas the Jacket 3 has the upper quantile at ≈ 160◦.

140 D. Evaluation

D.6. Model Evaluation at different Sampling Rates 141

D.6 Model Evaluation at different Sampling Rates

We have already presented evaluation results of the different headings estimation
techniques in Section 6.2.9.3. We provide more details on the Magnetic, Rotation
Vector and Direct Accelerations approach at lower sampling rates in Figure D.19,
D.20 and Figure D.21, respectively.

0 15 30 45 60 75 90 105 120 135 150 165 180
0

0.25

0.5

0.75

1

error [◦]

cu
m

ul
at

iv
e

pe
rc

en
ta

ge

100Hz
50.0Hz
33.3Hz
25.0Hz
20.0Hz
16.7Hz
14.3Hz
12.5Hz
11.1Hz
10.0Hz
9.1Hz
8.3Hz
7.7Hz

Figure D.19 Model Evaluation at different Sampling Rates: Cumulative
Error Distribution - Magnetic*. This figure depicts the error distributions of
the Magnetic approach at different sensor data sampling rates.
The general error distribution stays similar over all different frequencies. However,
decreasing the sampling rate leads to better results for the Magnetic technique.

142 D. Evaluation

0 15 30 45 60 75 90 105 120 135 150 165 180
0

0.25

0.5

0.75

1

error [◦]

cu
m

ul
at

iv
e

pe
rc

en
ta

ge

100Hz
50.0Hz
33.3Hz
25.0Hz
20.0Hz
16.7Hz
14.3Hz
12.5Hz
11.1Hz
10.0Hz
9.1Hz
8.3Hz
7.7Hz

Figure D.20 Model Evaluation at different sampling rates: Cumulative
Error Distribution - Rotation Vector*. This figure depicts the error distribu-
tions of the Rotation Vector approach at different sensor data sampling rates.
The Rotation Vector technique remains robust over all regarded frequencies.

0 15 30 45 60 75 90 105 120 135 150 165 180
0

0.25

0.5

0.75

1

error [◦]

cu
m

ul
at

iv
e

pe
rc

en
ta

ge

100Hz
50.0Hz
33.3Hz
25.0Hz
20.0Hz
16.7Hz
14.3Hz
12.5Hz
11.1Hz
10.0Hz
9.1Hz
8.3Hz
7.7Hz

Figure D.21 Model Evaluation at different sampling rates: Cumulative
Error Distribution - Direct Accelerations. This figure depicts the error distri-
butions of the Direct Accelerations approach at different sensor data sampling rates.
By decreasing sensor data, the amount of errors increases gradually until reaching a
uniform distribution. In general, this method does not perform as good as any other
presented one.

D.7. Comparison of Online and Offline variants 143

D.7 Comparison of Online and Offline variants

We have already discussed the comparison between our online and offline algorithm
variant in Section 6.2.6. However, we provide a more detailed overview on the error
distributions in Figure D.22.

0 15 30 45 60 75 90 105 120 135 150 165 180
0

0.25

0.5

0.75

1

error [◦]

cu
m
ul
at
iv
e
pe

rc
en
ta
ge

Overall GPS
Online Jacket
Online Trousers
Offline Jacket
Offline Trousers

Online All

Figure D.22 Cumulative Error Distribution: Online vs. Offline. This figure
shows the error distribution of our New Estimation technique in the online and
offline variant. The x-axis describes the absolute error, whereas the y-axis describes
the relative amount of measures below the corresponding absolute error. The used
datasets differ - the Global Positioning System (GPS) reference is calculated from
all datasets, the Jacket approach only considers jacket datasets and the Trousers
approach just uses trousers datasets, whereas we furthermore give a combination
which consideres all dataset as well.
The error distributions are very similar. The online methods perform generally
slightly worse than the offline variants due to the local knowledge restriction for
model determination.
Note, that we have marked the quantiles of interest (q.25, q.50, q.75) of the online
approach over all datasets.

144 D. Evaluation

D.8. Examplepath Evaluation 145

D.8 Examplepath Evaluation

Although a single examples does not show an overall behavior, they allow a deeper
understanding of the heading estimation and the related problem. We provide more
statistical data on the presented trousers pocket example run presented in Section
6.2.8. Moreover, we give an examples at the jacket pocket and handheld device
location, wheras both have been performed on the same path shown in Figure 6.12.

D.8.1 Additional Examples: Jacket Pocket & Handheld

The results of the example runs at the Jacket Pocket location are presented in Figure
D.23, wheras the results for the handheld example run are shown in Figure D.24.

Moreover, we provide additional statistics for both example runs. Boxplots are
shown in Figure D.25 and in Figure D.26, whereas we provide error distributins in
Figure D.27 and in Figure D.28, respectively.

146 D. Evaluation

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
0

90

180

270

360

H
ea

di
ng

[◦
]

Expected
New Estimation
Rotation Vector∗

Magnetic Field∗

Direct Acceleratios
Bearing Changes

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
−180

−90

0

90

180

N
ew

E
st

im
at

io
n

E
rr

or
[◦
]

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
−180

−90

0

90

180

R
ot

at
io

n
V

ec
to

r∗
E

rr
or

[◦
]

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
−180

−90

0

90

180

M
ag

ne
ti

c∗
E

rr
or

[◦
]

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
−180

−90

0

90

180

Time [s]

D
ir

ec
t

A
cc

el
er

at
io

ns
E

rr
or

[◦
]

Figure D.23 Example Run indoors - Results of Jacket Pocket. This figure
shows the results of our example run of the path depicted in Figure 6.12 with the
smartphone in the (outer) jacket pocket. The x-axis describes the passed time of
the run.
Top: The upper graph’s y-axis describes the current heading in degree. We illus-
trate the expected heading values extracted from map data and estimated heading
information of the regarded techniques. Furthermore, we marked significant heading
changes by vertical dashed lines.
Center to Bottom: The other four subgraphs show an exact evaluation of the esti-
mated headings, where the y-axis represents the error.
The New Estimated performs well at low error rates except for higher errors at each
bearing change. Although we use flipping, Rotation Vector* and Magnetic* heading
estimation show significantly wrong estimated values at mostly about 90◦. Direct
Accelerations provide a much better heading estimation, but is not as good as our
New Estimation method.

D.8. Examplepath Evaluation 147

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
0

90

180

270

360

H
ea

di
ng

[◦
]

Expected
New Estimation
Rotation Vector∗

Magnetic Field∗

Direct Acceleratios
Bearing Changes

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
−180

−90

0

90

180

N
ew

E
st

im
at

io
n

E
rr

or
[◦
]

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
−180

−90

0

90

180

R
ot

at
io

n
V

ec
to

r∗
E

rr
or

[◦
]

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
−180

−90

0

90

180

M
ag

ne
ti

c∗
E

rr
or

[◦
]

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
−180

−90

0

90

180

Time [s]

D
ir

ec
t

A
cc

el
er

at
io

ns
E

rr
or

[◦
]

Figure D.24 Example Run indoors - Results of Handheld. This figure shows
the results of our example run of the path depicted in Figure 6.12 with the smart-
phone in the handheld location. The x-axis describes the passed time of the run.
Top: The upper graph’s y-axis describes the current heading in degree. We illus-
trate the expected heading values extracted from map data and estimated heading
information of the regarded techniques. Furthermore, significant heading changes
are marked by vertical dashed lines.
Center to Bottom: The other four subgraphs show an exact evaluation of the esti-
mated headings, where the y-axis represents the error.
Both methods, the Rotation Vector as well as the Magnetic approach provide very
accurate results and outperform our New Estimation technique which used the jacket
model. The Direct Acceleration approach shows a strong variance and most errors.

148 D. Evaluation

M
ag
ne
tic
∗

R
ot
at
io
n

Ve
ct
or
∗

D
ire
ct

A
cc
el
er
at
io
nsN

ew

Es
tim

at
io
n

0

30

60

90

120

150

180

ab
so
lu
te

h
ea
d
in
g
es
ti
m
at
io
n
er
ro
r
[◦
]

Figure D.25 Example Run Evaluation: Jacket. This boxplot shows the error
distribution if the regarded headings estimation methods at a testrun in the jacket
device location.
Our New Estimation approach provides the best results with q.75 < 30◦. The Mag-
netic and Rotation Vector perform quite similar, whereas the Magnetic method
shows better performance in the lower quantile. The Direct Accelerations show an
accurate estimation for half of the estimated headings with q.50 ≈ 30◦, but shows a
wider overall distribution than all other methods.

M
ag
ne
tic
∗

R
ot
at
io
n

Ve
ct
or
∗

D
ire
ct

A
cc
el
er
at
io
nsN

ew

Es
tim

at
io
n

0

30

60

90

120

150

180

a
b
so
lu
te

h
ea
d
in
g
es
ti
m
at
io
n
er
ro
r
[◦
]

Figure D.26 Example Run Evaluation: Handheld. This boxplot shows the
error distribution if the regarded headings estimation methods at a testrun in the
handheld device location.
Both, the Rotation Vector and Magnetic approach perfrom very good with low error
rates with q.75 < 30◦ and up to four outliers beyond 90◦. Our New Estimation
method, which operates with the jacket model also performs acceptable with q.75 <
50◦. The Direction Accelerations approach provides the worst results with q.50 ≈ 40◦

and q.75 . 90◦.

D.8. Examplepath Evaluation 149

0 15 30 45 60 75 90 105 120 135 150 165 180
0

0.25

0.5

0.75

1

error [◦]

cu
m

ul
at

iv
e

pe
rc

en
ta

ge

New Model
Magnetic*

Rotation Vector*
Direct Accelerations

Figure D.27 Example Run Evaluation: Cumulative Error Distribution -
Jacket. This figure shows the complete error distribution of the regarded heading
estimation techniques at the example handheld run. The x-axis describes the abso-
lute error, whereas the y-axis describes the relative amount of measures below the
corresponding absolute error.
Out New Estimation technique shows very good performance with q.75 ≈ 25◦. Both,
the Magnetic and Rotation Vector technique fail to give accurate results, but seem
to be biased as the largest amount of errors is in an interval of 45◦ to 75◦. The
Direction Accelerations provide accurate results for roughly 65% of the estimations,
but shows a significant amount of errors greater than 90◦.
Note, that we have marked the quantiles of interest (q.25, q.50, q.75) of the New
Estimation technique.

0 15 30 45 60 75 90 105 120 135 150 165 180
0

0.25

0.5

0.75

1

error [◦]

cu
m

ul
at

iv
e

pe
rc

en
ta

ge

New Model
Magnetic*

Rotation Vector*
Direct Accelerations

Figure D.28 Example Run Evaluation: Cumulative Error Distribution
- Handheld. This figure shows the complete error distribution of the regarded
heading estimation techniques at the example handheld run. The x-axis describes
the absolute error, whereas the y-axis describes the relative amount of measures
below the corresponding absolute error.
Both, the Rotation Vector and Magnetic method yield very accurate results with
q.75 < 25◦ and q.90 < 75◦. Our New Estimation also performs good with q.75 ≈ 45◦.
The Direct Accelerations approach is not as accurate as the other methods.
Note, that we have marked the quantiles of interest (q.25, q.50, q.75) of the New
Estimation technique.

150 D. Evaluation

D.8.2 Additional Statistics for Trousers

We have presented a test run at the trousers location in Section 6.2.8. We provide
further statistical data in a boxplot in Figure D.29, wheras the corresponding error
distributions is depicted in Figure D.30.

M
ag
ne
tic
∗

R
ot
at
io
n

Ve
ct
or
∗

D
ire
ct

A
cc
el
er
at
io
nsN

ew

Es
tim

at
io
n

0

30

60

90

120

150

180

ab
so
lu
te

h
ea
d
in
g
es
ti
m
at
io
n
er
ro
r
[◦
]

Figure D.29 Example Run Evaluation: Trousers. This boxplot shows the
error distribution if the regarded headings estimation methods at a testrun in the
trousers device location.
We get best results by our New Estimation approach with q.75 ≈ 20◦, but it also
shows several outliers with errors up to 115◦. The Direct Accelration technique
outperforms the Magnetic and Rotation Vector method with q.75 < 50◦.

D.8. Examplepath Evaluation 151

0 15 30 45 60 75 90 105 120 135 150 165 180
0

0.25

0.5

0.75

1

error [◦]

cu
m

ul
at

iv
e

pe
rc

en
ta

ge

New Model
Magnetic*

Rotation Vector*
Direct Accelerations

Figure D.30 Example Run Evaluation: Cumulative Error Distribution -
Trousers. This figure shows the complete error distribution of the regarded head-
ing estimation techniques at the example handheld run. The x-axis describes the
absolute error, whereas the y-axis describes the relative amount of measures below
the corresponding absolute error.
Our New Estimation technique shows very good performance with q.75 ≈ 20◦. The
Direction Accelerations method also provides very accurate results with q.75 ≈ 45◦

and outperforms the Magnetic and Rotation Vector approach.
Note, that we have marked the quantiles of interest (q.25, q.50, q.75) of the New
Estimation technique.

	Contents
	1 Introduction
	1.1 Contributions
	1.2 Structure of the Thesis

	2 Background
	2.1 Inertial Navigation Systems
	2.1.1 Pedestrian Dead Reckoning

	2.2 MEMS
	2.2.1 Gyroscope
	2.2.2 Accelerometer
	2.2.3 Magnetic Field
	2.2.4 Sensor Fusion

	2.3 Android
	2.4 Navigation Applications
	2.5 FootPath
	2.5.1 Current Movement Detection
	2.5.2 Matching Algorithm
	2.5.3 Current Map Modeling
	2.5.4 User Interface

	2.6 Summary

	3 Related Work
	3.1 WiFi-Localization
	3.2 Dead Reckoning
	3.2.1 Foot-Mounted Devices
	3.2.2 Heading Estimation
	3.2.2.1 More sophisticated approaches

	3.2.3 Movement and Step Detection
	3.2.3.1 Zero-Crossing
	3.2.3.2 Peak
	3.2.3.3 Gyroscope
	3.2.3.4 Autocorrelation
	3.2.3.5 Vision-aided

	3.2.4 Step Length Estimation
	3.2.5 Including Map Data
	3.2.6 Further Improvements
	3.2.7 Adding WiFi
	3.2.8 Results

	3.3 Navigation Interfaces
	3.3.1 Visual
	3.3.2 Audio
	3.3.3 Vibration

	3.4 Summary

	4 Design
	4.1 Overall Design Considerations - Layered Design
	4.2 New Model for Step and Direction Detection
	4.2.1 Functional Requirements Analysis
	4.2.2 Magnetic Compass
	4.2.3 Smartphone Carrying Locations - Survey
	4.2.4 First Approaches
	4.2.4.1 Direct Rotated Linear Accelerations
	4.2.4.2 Magnetic Field and Accelerations
	4.2.4.3 Sensor Fused Rotation Vector

	4.2.5 Final Model Decisions
	4.2.5.1 Generalized Model
	4.2.5.2 Model Design

	4.2.6 Method to get Parameters
	4.2.6.1 Smoothing

	4.2.7 Non-Step updates

	4.3 Navigation Interface
	4.3.1 Current Interface: Display
	4.3.2 Overlay Graph and Interestpoints
	4.3.2.1 Interest Points

	4.3.3 Alternative Interfaces
	4.3.3.1 Audio
	4.3.3.2 Vibration

	4.3.4 Metric Linear Temporal Logic
	4.3.4.1 From Overlay-Graph-Paths to MLTL-ready Paths

	4.4 Summary

	5 Implementation
	5.1 MATLAB
	5.2 From Offline to Online
	5.2.1 Time Bounds
	5.2.2 Limited Knowledge

	5.3 FIR vs. Convolution
	5.4 Actiongraph
	5.5 MLTL
	5.6 Class Overview
	5.6.1 Orientation
	5.6.1.1 Data Collections
	5.6.1.2 Datamanager
	5.6.1.3 Sensor Fusion
	5.6.1.4 Step Detection
	5.6.1.5 Non-Step Updates

	5.6.2 Navigation

	5.7 Insidious Bugs and Unittests
	5.7.1 Unittests
	5.7.2 Challenging Bugs

	6 Evaluation
	6.1 Device Carrying Location Estimation
	6.2 Evaluation on Collected Data
	6.2.1 Heading Estimation Approchaes
	6.2.2 Flipping
	6.2.3 Smoothing
	6.2.3.1 Pre-smoothing
	6.2.3.2 Post-smoothing

	6.2.4 Model Parameter Determination
	6.2.5 Offline Approach
	6.2.5.1 Jacket Dataset
	6.2.5.2 Trousers Dataset
	6.2.5.3 Complete Dataset

	6.2.6 Online Approach
	6.2.7 Outliers
	6.2.7.1 False Device Location Estimation
	6.2.7.2 Outliers in Heading Estimation

	6.2.8 Example Path
	6.2.9 Decreased Sampling Rate
	6.2.9.1 Model Distinction at Lower Resolution
	6.2.9.2 Step Detection at Lower Resolution
	6.2.9.3 Model Evaluation at Lower Resolution
	6.2.9.4 Model Optimization at Lower Resolution

	6.3 Requirements fulfilled?
	6.4 Heading Estimation - Comparison to Related Work
	6.5 New Navigation Interfaces
	6.6 Summary

	7 Future Work
	7.1 Device Location Determination
	7.2 New Models
	7.3 Individual Model Fitting and Learning
	7.4 Better Rules for User-Feedback
	7.5 Adapt Step Length on the Fly
	7.6 Using Barometer
	7.7 Combine Multiple Localization Technologies

	8 Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	A Survey Results - Where do you carry your smartphone?
	B Heading Ambiguity at Magnetic Field and Accelerations
	B.1 Rotation Matrix
	B.2 Heading

	C MLTL Examples
	D Evaluation
	D.1 Device Location Determination
	D.2 Flipping
	D.3 Smoothing
	D.3.1 Presmoothing
	D.3.2 Postsmoothing

	D.4 Model Parameter Optimization
	D.5 Model Evaluation
	D.5.1 Outliers

	D.6 Model Evaluation at different Sampling Rates
	D.7 Comparison of Online and Offline variants
	D.8 Examplepath Evaluation
	D.8.1 Additional Examples: Jacket Pocket & Handheld
	D.8.2 Additional Statistics for Trousers

